
 ICE Technology, Nohau 800.686-6428 or 650.375.0409 www.icetech.com sales@icetech.com

Introduction
Software debuggers and target monitors
offer economical debugging capabilities
sufficient for many applications. In-circuit
emulators offer additional advanced real-
time debugging facilities. There are major
differences between each of these options
in terms of debugging power, real-time
operation, and non-intrusiveness. Some
debuggers, such as those from Keil, PLS
and ChipTools can do advanced tasks
when interfaced to an emulator.

With these debuggers, one can load,
single-step and run programs. Software
breakpoints can be set and memory can be
examined. Code Coverage and Perfor-
mance Analysis provide statistical
information. Software debuggers do a
good job, but have some shortcomings
that can be crucial in detecting and fixing
some of the more elusive bugs or in
special circumstances.

Interesting “what-if” Scenarios
What if you are debugging code that is in
ROM ? Or even trickier: ROM inside the
chip. What if you need the serial port that
debuggers commonly use to communicate
with the controller ? What if you want to
detect a certain situation: such as a write
of a certain value to an external periph-
eral and if another variable equals 6,
and then stop the execution ? Or record
these bus cycles ? What if a bug causes
your program to jump off into never-land
and you need to know what was happen-
ing just before this event ? Hardware
Breakpoints, a non-intrusive connection,
Conditional Triggers and Trace Memory
are solutions to these problems and more.
You need an emulator.

This article will explore some advantages
offered by emulators and how you can
produce better code by using one.

The Development Cycle
The typical microprocessor development
project begins with a C compiler produc-
ing an object file from your source code.
This object code will contain the physical

The Software Engineer’s Guide to In-Circuit Emulation
How to increase your debugging skills!

addresses and some debugging informa-
tion. This object code can be executed and
debugged using a software simulator, a
target monitor or an in-circuit emulator. A
most undesirable method is to program an
EPROM and simply run the target system.

The program is debugged by setting
breakpoints to halt execution at selected
instruction locations. When execution is
halted, the memory and register contents
are examined for clues to help find bugs.

The debugged object code is re-compiled
removing the debug information and
producing a file in a standard format such
as Intel HEX. This file will be stored in the
final product’s nonvolatile memory such as
EPROM or FLASH. This process is
illustrated below in Figure 1.

Why do we need emulators ?
There are some cases where an emulator is
needed to resolve difficult to find bugs. In
all cases an emulator will pay for itself by
providing you with decreased debugging
time, ease of system integration, increase
in reliability and better testing procedures.
Often, designers use both an emulator and
software debugger during different project
stages, especially in larger design teams.

Software simulators and debuggers offer

only a few features beyond breakpoints
such as displaying port contents and code
coverage. There are no means to detect
events or conditions and then act on them,
and certainly not in real-time. There are
also no means to record controller bus
cycles to determine what actually hap-
pened to the program flow. If your micro-
controller has on-board EPROM or FLASH
memory, and is running in single chip
mode: only an emulator can debug this
scenario without serious intrusion and
consumption of controller resources.

In-circuit emulators can easily do these
tasks and more for you. Emulators are the
bridge between software and hardware. At
some point in time, you have to run your
program in real hardware. An emulator will
easily help you accomplish this. This
article examines how emulators will help
you with your debugging sessions.

What exactly is an emulator ?
“An emulator is a computer that engineers
use to design other computers” is the most
basic definition . Emulmulators simply
replace the microcontroller in your
target system. The emulator behaves
exactly like the processor with the added
benefit of allowing you to view data and
code inside the processor and control the
running of the CPU.

Figure 2 shows a Nohau emulator for the
C166 and ST10 microcontroller families.
Figure 3 shows the Nohau emulators for
the Motorola HC12 family. These emula-
tors are compact handheld emulators that
go anywhere you and your laptop can go.
They are all powered with a 5 volt supply.

 ICE Technology Nohau Brand Embedded Systems Tools

© ICE Technology

 ICE Technology, Nohau 800.686-6428 or 650.375.0409 www.icetech.com sales@icetech.com

External Mode
External mode is when the program
memory and perhaps some data memory is
located externally to the controller. This is
the classic situation where the target board
contains a microcontroller, some EPROM
or FLASH, RAM and some type of
peripheral chips. The address and data
busses are available to access this memory
and are the only means for an emulator to
gather information and control the CPU.
Therefore information about internal
registers is not available in real-time. The
address and data busses may not be used
as general I/O ports. Production chips are
effective for emulating this mode as are
the special emulation chips.

Internal or Single-chip Mode
Internal mode is when program and data
memory is located in the controller chip
in the form of FLASH or EPROM. This
method is becoming preferred for embed-
ded designs due to its low cost. The
address and data busses are not accessible
to the user. These busses are then avail-
able as I/O ports. All program execution
occurs in the internal ROM. This mode
requires a bondout, Enhanced Hooks,
JTAG or BDM chip for emulation.

Nohau emulators generally run these
chips in external mode and use special
circuitry to reconstruct the I/O ports. This
process is transparent to the user. BDM
and JTAG chips are special situations.

It is possible to embed a monitor kernel in
the ROM, coexisting with the program
code. The user can activate the kernel
with a switch connected to an I/O pin.
This will allow communication with a
debugger via a serial port. Of course,
some system resources need to be reserved
for this scheme but it is still useful.

Bondout Chips
Bondout chips allow single chip emula-
tion by providing extra pins connected to
internal CPU nodes. Infineon C166,

ST Microelectronics ST10 and Intel 196
and x86 emulators generally use bondout
chips for effective emulation. The Nohau
EMUL166-PC and EMUL-ST10 are good
examples. It is possible to make emulators
for these families using production parts
but performance is usually lacking in
internal accesses.

The Infineon C167 and the ST 167 and 168
microcontrollers use Ports 0 through 4 for
address and data busses in external mode.
Which ports are used depends on the bus
configuration as programmed at CPU
initialization. The bus configuration can be
changed “on-the-fly” while the processor
is running. From 16 to 40 port bits can be
used as address/data lines. These then
cannot be used for general purpose I/O
ports.

If the microcontroller is a version that
contains internal ROM that contains
program code and data, it can be run in
internal or single-chip mode. Ports 0
through 4 can be used as general purpose
I/O pins. The emulator bondout controller
allows operation in this mode. The target
controller will be disabled and the
bondout controller will take its place.

It will use the emulator RAM to simulate
the ROM. All ports (serial and parallel)
will be free for use by the target system.
The internal CPU busses will be made
available to the emulator providing high
performance and visibility. The Destina-
tion, Source and Value fields in Figure 4
are examples of internal busses made
visible. A bondout chip can emulate both
internal and external modes and uses no
resources from the controller. Not all
emulators are capable of this.

Hooks & Enhanced Hooks Chips
Hooks and Enhanced Hooks chips take
advantage of unused cycle times on
various pins to provide the address and
data busses. Hooks and Enhanced Hooks
chips are used with the Infineon C500

family, Philips, and Intel 8051 parts for both
internal and external modes. Interestingly,
these chips are also standard production
chips. This increases emulation accuracy
since the emulation chips are the same
used in regular production.

All Infineon C500 production chips have
Enhanced Hooks support built in. Figure
5 is the Nohau Enhanced Hooks pod with
the C517A daughterboard installed.
Shown are other daughterboards. These
pods connect to the standard Nohau
EMUL51 emulator. Production chip
emulators can emulate these 8051 parts
only in external mode so are not popular.

Standard Production Chips
The emulator needs information from, and
also needs to control the target controller.
This is done via the address and data
busses and various control signals such
as interrupt and read and write pins. Since
internal information is not normally
presented on these busses during run
time, it is not available in real-time. The
emulation must be halted, the internal
registers must be read and stored and
emulation continued. This results in
unacceptable intrusion times. These types
of emulators make excellent tools if the
access restrictions are acceptable.

Advantages are the same emulation chip
as production, easy changing of same
family processors and low cost emulators.

Figure 3

 ICE Technology, Nohau 800.686-6428 or 650.375.0409 www.icetech.com sales@icetech.com

BDM: Background Debug Mode
This is a Motorola scheme using a
dedicated serial port to gain access to a
special debug module inside the micro-
controller. This module operates parallel
to the microcontroller and generally uses
no resources. It has access to internal
registers and memory and can control the
CPU. Some models have two hardware
breakpoints for ROM operation. Figure 6 is
the Nohau HC12 BDM emulator.

A BDM emulator does not have a trace
memory, triggers or emulation memory. A
BDM emulator is sometimes used in
conjunction with a full emulator. It can
program FLASH and EEPROM into the
HC12 controller in your target system.

You can load a program and single-step
or run the target processor. Source code
will be visible for HLL debugging. You
can set software breakpoints (hardware in
HC12) and view memory in real-time.

Variable, arrays and structures are viewed
in a variety of formats. The emulator runs
at full clock speed. A BDM emulator is
more robust than a monitor, but with less
features than a full emulator.

JTAG and OCDS Debugging
The higher speeds and complexity of
some microprocessors has encouraged
chip makers to incorporate debugging
facilities on-chip. The BDM is one
example. The JTAG interface was
designed to facilitate testing circuit board
connections between large chips. This is a
serial connection and signals can be sent
to and read from I/O ports. This is also
called the JTAG Boundary Scan because
the serial data scans the outside I/O pins
of the chip. A pattern sent from one chip
to the next can be then compared to check
if the circuit board connections are intact.
Since the JTAG port is unused during
normal chip operation, and since it runs in

parallel to the controller’s CPU, it can
access an on-chip debugging module in
real-time similar to the BDM interface.
This debug module is called OCDS (On-
Chip Debugging Support) in the newer
Infineon microcontrollers such as the
C161U and the UTAH. This module has
direct access to the CPU core. Manufac-
turers such as Motorola also use this
approach in the PowerPC and some 68K.
The ARM7 also uses a JTAG accessed
debugging module. Nohau supports the
Infineon OCDS and ST Microelectronics
OCE protocols. It is possible to build a full
emulator using a combination of the OCDS
and standard trace and trigger hardware
giving high performance.

No target or CPU resources used
Monitor kernels typically need about 10K
ROM and 10-20 bytes RAM and a free
communication port. A good emulator
uses none of these. The emulator should
be invisible to the target. Better emulators
are and in addition do not steal CPU cycle
time for ordinary housekeeping duties.

Getting the Hardware Working
Simulators are great, but they can not take
all the variables into account. A simulator
designer has to think of everything: the
big problems are usually those items that
come up after the hardware is constructed.
Items like capacitance, timing, inductance,
and chip versions. These become more
important as CPU speeds increase. It is a
very difficult task to replicate the pipeline
found in many microcontrollers today and
is best done with real hardware.

Target monitors are considerably better in
that they run on real hardware. But the
target system must be a complete working
system in order to get the monitor kernel to
run. Not so with an emulator. An emulator
will run with no hardware at all or incom-
plete sections. A target monitor can be

installed in the final target ready to be
activated at any time for debugging. This
is useful for test and repair purposes.
Figure 7 is the Nohau EMUL-ST10-PC
emulator connected to the Phytec C167CR
evaluation board. Evaluation boards are
an economical and practical method of
shortening your product development
time. It is also a useful reference design.

Connecting to Your Target System
This is easy. Most issues will be handled
by the board designer in conjunction with
your emulator representative. Connection
to the target is a two step process.

First, the adaptation method must be
chosen. Solder-down and socket methods
are preferred. Clip-over adapters are
handy but expensive. Nohau provides the
Delta probe. If you need to access the
target in a hard-to-access area, consider
Nohau’s Flex Cable. Figure 8 is the adapter
for the Phytec KitCon167 board.

Second, the software and jumper settings
on the emulator must be correctly set to
match the target board and the software
initialization routines. This is easy to do
and here is where good technical support
counts. Usually the default settings work.

To connect the Nohau EMUL166 to the
Phytec C167CR board, only four sockets
need to be soldered on it and one jumper
(AutoMap) needs to be removed on the
emulator. In the EMUL-ST10, two chip
selects need to be activated with simple
mouse clicks. Load the code, and the
board immediately goes into operation!
The board behaves as before, but now you
have access to the internal workings of
the system. You also have powerful trace
and trigger features as already described.
The same scenario works for other boards
as well as your custom prototype.

Figure 6

 ICE Technology, Nohau 800.686-6428 or 650.375.0409 www.icetech.com sales@icetech.com

Hardware Breakpoints
A software breakpoint is created by
inserting a 2 byte TRAP instruction which
will divert normal program flow to the
debugger. The program may crash if the
program counter lands on the second byte.
Nohau hardware breakpoints use com-
parators to detect accesses to a location
and no code memory contents are modi-
fied. Breaks on regions need hardware
breakpoints. Software breaks are still
useful and Nohau provides both types.

Software breakpoints are useless with
ROM memory since a TRAP can not be
inserted. Only hardware breakpoints
function in ROM systems.

Trace Memory
The Trace records each processor cycle
along with a timestamp and optionally
external signal levels. The trace can
record all code fetches and will distin-
guish between instructions that are
cancelled in the pipeline and those
successfully executed. False triggering is
therefore avoided on unexecuted instruc-
tions. Simulators and monitors do not
have trace memory.

Trace Memory: An example
The trace window shown in Figure 4 is
from the EMUL-ST10-PC and results
from the code shown in Figure 9 which is
the source code window. Other emulators
are similar. This recording was unfiltered
and represents all executed instructions.
Instructions entering the pre-fetch queue,
then cancelled, are not erroneously
classified as been executed. They can be
usually shown in the trace if desired.

Note the fields available. The trace can be
filtered with the triggers so that only
specified cycles are recorded. This saves
time searching for bugs. You can trigger
on specific addresses, data values, and
qualifying them as reads or writes and

many other similar qualifiers. The trace
memory is a powerful tool, displaying
events as they really happened.

Conditional Triggers
These are extremely powerful and easy to
use. They allow you to specify an action
when some event happens. The Trigger
Configuration window shown in Figure
10 is a basic entry. If a data R/W cycle
with a value from 34 to 4E and in the
address range from 5000 to 5017 occurs,
a trigger event will be created.

The trigger can include address, data,
clock cycles and external signals. These
can trigger a break, start/stop the trace
capture, record a timestamp or many
other things determined by the emulator’s
capabilities. This powerful tool is found
only in emulators.

Actual Memory and I/O Ports
Ports and memory can be viewed from real
hardware parts and not simply a software
simulation. It is possible to wire your
favorite peripheral chip to the bottom of
the emulator pod and access it. Accurate
software simulation depends on all the
nuances of complex peripherals entered
correctly and is hard to achieve.

Often, it seems that problems only develop
when the program is run on the actual
hardware. How often does it seem that
things depend so much on the rise or fall
time of some input signal ? Or the routing
of a certain wire ? An emulator will help
get your development finished faster by

getting you to this point directly.

Data can be viewed in various forms such
as the graphical types shown in Figure 11,
or in several handy numerical formats.

Since the emulator has its own internal
RAM which can be substituted for ROM,
you can debug and modify the program
code and data easily in ROM systems.

In the same fashion, memory not yet
installed on the target can be substituted
by the emulator. The size and address of
this RAM is selectable. The granularity is
2 bytes on the EMUL166-PC allowing
mapping around any external peripheral.

Performance Analysis in Hardware
A debugger can only simulate Perfor-
mance Analysis and it does a good job.
The emulator goes one step further by
doing the analysis on the real hardware
increasing accuracy. Once again, using
the actual hardware will show problems
that might not be evident in software
simulation. Spurious interrupts and other
functions that unexpectedly consume CPU
resources can cause serious performance
problems and can be difficult to find.
Performance Analysis can easily find such
problems. Figure 12 shows a PPA display.

Conclusion
This article has provided information
about In-Circuit Emulators and the
benefits that accrue to you, the designer.
You will be better able to select various
components of the cycle depending on
your needs. See www.icetech.com for more
information on emulators and how they
can help you debug your projects faster.

