
Nohau Corporation Campbell, California (888) 886-6428 (408) 866-1820 www.nohau.com sales@nohau.com

Introduction
Software simulators, target monitors and
BDM (or SDI) interfaces offer economical
debugging capabilities sufficient for many
applications. In-circuit emulators offer
additional advanced real-time debugging
facilities. There are differences between
these options in terms of debugging
power, real-time operation, intrusiveness
and productivity effectiveness.

With software debuggers, monitors and
BDM tools one can load, single-step and
run programs. Software breakpoints can
be set and memory can be examined. Some
microcontrollers, such as the HC12, have
integral hardware breakpoints set via the
BDM interface. Code Coverage and
Performance Analysis may be available
providing statistical information. These
tools do a good job, but have some
shortcomings that can be crucial in
detecting and fixing some of the more
elusive bugs or in special circumstances.

Interesting “what-if” Scenarios
What if you are debugging code that is in
ROM? Or even trickier: ROM inside the
chip? What if you need the serial port that
software debuggers commonly use to
communicate with the controller? What if
you want to detect a certain situation:
such as a write of a certain value to an
external peripheral AND if another variable
equals 6, and then stop the execution? Or
record these bus cycles? What if a bug
causes your program to jump off into
never-land and you need to know what
was happening just before this event?
What if your RTOS is causing strange
problems? If you have bugs in different
memory banks: is your tool aware of bank
switching? Unlimited hardware
breakpoints, a non-intrusive connection,
bank aware conditional triggers and trace
memory are solutions to these problems
and more. You need an emulator.

This note examines these situations using
Motorola microcontrollers such as the
HC11, HC12, HC16 and the 68300 series.
The focus is on the HC12 series.

The Software Engineer’s Guide to In-Circuit Emulation
Increase your debugging skills with Motorola Microcontrollers!

The Development Cycle
The typical microprocessor development
project begins with a C compiler produc-
ing an object file from your source code.
This object code will contain the physical
addresses and some debugging informa-
tion using a standard file format such as
IEEE695 or ELF-DWARF. This object code
can be executed and debugged using a
software simulator, a target monitor, BDM
debugger or an in-circuit emulator. A most
undesirable method is to program an
Eprom or internal FLASH, run the target
system and observe what happens.

The program is debugged by setting
breakpoints to halt execution at selected
instruction locations. When execution is
halted, the memory and register contents
are examined for clues to help find bugs.

The debugged object code is re-compiled.
For the final product the debug informa-
tion is removed and a file is produced in a
standard format such as Motorola S-
records. This file will be stored in the final
product’s nonvolatile memory such as
EPROM or FLASH. This process is
illustrated in Figure 1. This memory can be
external or internal to the microcontroller.
The HC11 has OTP (unerasable EPROM)
and the HC12 has FLASH and EEPROM.

Why do we need emulators ?
There are some cases where an emulator is
needed to resolve difficult to find bugs. In
all cases an emulator will pay for itself by
providing you with decreased debugging
time, ease of system integration, increased
reliability and better testing procedures.
Often, designers use both an emulator and
a BDM debugger during different project
stages, especially in larger design teams.
A BDM running on a Motorola controller
is more effective than a target monitor.

Software simulators and debuggers offer
no means to detect events or conditions
and then act on them, and certainly not in
real-time. There are no means to record
controller bus cycles to determine what
actually happened to the program flow.

In-circuit emulators can easily do these
tasks and more for you. Emulators are the
bridge between software and hardware. At
some point in time, you have to run your
program in real hardware. An emulator will
easily help you accomplish this.

What exactly is an emulator?
“An emulator is a computer that engineers
use to design other computers” is the most
basic definition I have thought of. Emula-
tors replace the microcontroller in your
target system. The emulator behaves
exactly like the processor with the added
benefit of allowing you to view data and
code inside the processor and control the
running of the CPU.

Figure 2 shows the Nohau emulators for
the Motorola HC12 family. They are all
compact handheld emulators that go
anywhere you and your laptop can go.
They are all powered with a 5 volt supply.

Nohau Corporation
51 East Campbell Avenue
Campbell, California 95008

©2002 Nohau Corp

Version 2.1

October 15, 2002

Nohau Corporation Campbell, California (888) 886-6428 (408) 866-1820 www.nohau.com sales@nohau.com

not functioning you might not be able to
establish communication with the CPU.
Typical problems include wrong or erratic
clock speeds, shorted or reversed address
and data busses or defective memory
addressing logic. You may have difficulty
determining why your target is not running
and some tools might not provide many
clues. Not so with an emulator. An
emulator will run with no hardware at all or
incomplete sections. You can usually peek
and poke at memory areas and gain
enough clues to guide you to the problem
area such as stuck bit(s).

Evaluation boards are an economical and
practical method of shortening your
product development time. They are also a
useful reference design for comparison.

Connecting to Your Target System
This is easy. Most issues will be handled
by the board designer in conjunction with
your emulator representative. Connection
to the target is a two step process.

First, the adaptation method must be
chosen. Solder-down and socket methods
are preferred. The HC11 and 16 are often
in a socket and adapters are available from
Nohau. Clip-over adapters are handy but
expensive. They require the target
controller to have the ability to be put into
a tri-state mode. The HC12 does not have
this resource. Therefore solder-down or
custom adapters are needed. The BDM
needs only the Motorola specified BERG
connector. If you need to access the
target in a hard-to-access area, consider
Nohau’s Flex Cable shown in Figure 4.
The cable can approach the target from
any of the four quadrants. Figure 5 is the
Nohau DA/DG128 solder-down adapter.

Second, the software and jumper settings
on the emulator must be correctly set to
match the target board and the software
initialization routines. This is easy to do
and here is where good technical support
counts. Usually the default settings work.

Hardware Breakpoints
A software breakpoint is created by
inserting a 2 byte instruction which will
divert normal program flow to the
debugger. The program may crash if the
program counter lands on the second byte.
Nohau hardware breakpoints use compara-
tors to detect accesses to a location and
no code memory contents are modified.
Breaks on regions need hardware
breakpoints. Software breaks are still
useful and Nohau provides both types.

Software breakpoints are useless with
ROM memory since the instruction can not
be inserted. Only hardware breakpoints
function in ROM systems.

The two hardware breakpoints provided in
the HC12 are not sufficient for easy source
code single stepping in FLASH memory.
Source code single stepping is accom-
plished by setting hardware breakpoints at
all locations the program could jump to
when an assembly step is performed. In

assembly stepping, there is no problem but
with source stepping there are usually
many assembly steps associated with a
single line of C source code. The problem
is where to set the two breakpoints to stop
the execution at the end of the sequence
and what if there are any jumps out of the
sequence? Many workarounds are used
especially in BDM debuggers. Some of
these workarounds are quite elegant. The
Nohau full emulator solves this problem
perfectly since it has an unlimited number
of hardware breakpoints which are set to
cover any contingency.

Trace Memory
The Trace records each processor cycle
along with a timestamp and optionally
external signal levels. The trace can record
all code fetches and will distinguish
between instructions that are cancelled in
the CPU pipeline and those successfully
executed. False triggering is therefore
avoided on unexecuted instructions.

The trace can be filtered with the triggers
so that only specified cycles are recorded.
This saves time searching for bugs. You
can select what is recorded in the trace and
can include data reads & writes, instruc-
tion fetches and/or executions, free cycles
and power down cycles. You can trigger
on specific addresses, data values, and
qualifying them as reads or writes and
many other similar qualifiers. The trace
memory is a powerful tool displaying
events as they really happened. Simula-
tors, monitors and BDM debuggers do not
have trace memory or triggers.

Trace Memory: An example
The trace window shown in Figure 6 is
from the Nohau DG128 emulator. This
recording was unfiltered and represents all
executed instructions, data reads and
writes and a timestamp. Instructions
entering the pre-fetch queue, then can-
celled, are not erroneously classified as
been executed.

The trace can be filtered with the triggers
so that only specified cycles are recorded.
This saves time searching for bugs. You
can trigger on specific addresses, data
values, and qualifying them as reads or
writes and many other similar qualifiers.
The trace memory is a powerful tool,
displaying events as they really happened.

