
Debugging with the Siemens C167 E2 Bondout MicrocontrollerDebugging with the Siemens C167 E2 Bondout MicrocontrollerDebugging with the Siemens C167 E2 Bondout MicrocontrollerDebugging with the Siemens C167 E2 Bondout MicrocontrollerDebugging with the Siemens C167 E2 Bondout Microcontroller
Introduction
There are several possible methods to
emulate a microcontroller and each
method has its benefits and draw-
backs. Siemens chose the bondout
controller method for its C166 family
and Enhanced Hooks for its C500.
This article will focus on the E2
bondout that emulates all C166 family
members except the C166 itself. The
C166 has its own bondout.

Nearly all emulators made for the C166
family utilize the E2 bondout although
there are a few that use standard
production chips. The E2 replaces the

older E (or E1). The Nohau EMUL166
is shown without its case. The E2
bondout is on the right side and has a
silver top.

Internal or External Mode
The C166 can operate in either single-
chip or external mode. In External
mode, address and data buses are
used to access external memory via
ports P0, P1 and P4.

In single-chip, the instructions are
fetched and data is accessed from on-
board ROM or FLASH and RAM.
There are no data and address buses
to the outside world that an emulator
can use. P0, P1 and P4 can then be
used as general purpose I/O.

External mode allows an emulator to
see operations since the buses are
visible. The emulation must be
interrupted in order to read internal
registers and RAM. Real-time
operation is therefore lost. A bondout
or Enhanced Hooks fixes this.

What the E2 Bondout Offers
 The E2 bondout operates in both
external and single-chip modes. It has
extra external buses to provide the
emulator access to internal resources
and information even when the
address and data buses are not
available as in single-chip mode.
These buses are called IA, ID, OA,
OD and XBUS. Most emulators use
these buses to obtain detailed internal
information and they are also dis-
played in the Nohau trace memory.
Nohau displays the signals it derives
from these buses.

You can trigger on and record in trace
memory internal events in real-time.
These internal events are impossible
to see without a special emulation
chip such as a bondout or Enhanced
Hooks. For more information see
www.nohau.com under Technical
Publications.

The E2 offers internal triggering, ROM
simulation, and detailed trace record-
ing all without intrusion into the
emulation.

Special Bondout Buses
Five buses available on the bondout
are optionally visible in the trace
display as shown in the screen shots
below. The descriptions of the buses
are general in nature and are not true
for all cycles.

IA Bus: Instruction Address
ROM Instruction Address Bus. This
16 bit bus shows the address of

instruction transfers on the internal
ROM bus. This is visible only in
single-chip mode.

ID Bus: Instruction Data
ROM Instruction Data bus. This 32
bit bus displays instruction and data
over the ROM bus. Effective only for
single-chip.

OA: Operand Address
This 18 bit bus displays read and write
addresses. This and the OD bus are
shown in the second screen shot.
The two * characters shown in the
OA field signify valid write cycles
that were executed. This field can be
used to distinguish between executed
opcodes and pipeline flushes.

OD Bus: Opcode Data
This 16 bit bus displays the data word
of an opcode. Opcodes of injected
instructions (into the pipeline) are
visible here. The OD and OA buses
are very useful.

XBUS
The XBUS is an internal representa-
tion of the external bus. This 16 bit
bus displays the data on the internal
XBUS as well as data writes to
external memory.

Misc.
This field displays bit flags that
Nohau derives from the bondout
controller pins. These signals are
useful to determine certain situations
the controller is in. Examples include
jump taken, jump cache hit, R/W,
trigger event, operand size, and
instruction or data. Eight I/O signals
and the pipeline instruction counter
are also displayed in this field.

Instruction Pipeline
The C166 family has a 4 stage instruc-
tion pipeline that can be demonstrated

Jump Cache
The C166 family has a jump cache
mechanism to speed conditional
loops. The branch target instruction is
stored in the jump cache and each
time it is needed, it is fetched from
here and not from slower program
memory. This branch target instruc-
tion is injected directly into the
decode stage of the pipeline. The
trace screen shown below was derived
from this code segment:
000206: A55AA5A5 DISWDT

00020A: E080 MOV R0,#8h

00020C: 26F00100 SUB R0,#1h

000210: EAE00C02 JMPA cc_UGT,20Ch

000214: CC00 NOP

The Branch Target Instruction is the
SUB at 20C. The DISWDT is the
disable watchdog timer. R0 is initial-
ized with 8 and is decremented by 1 by
SUB. JMPA tests R0 and jumps back
to SUB until R0 equals zero. In this
case, a trigger was set for R0 to equal
5, then halt emulation. This fact is not
clear in this trace window.

Jump Cache Hit
Siemens states that when the cache
jump instruction passes through the
decode stage of the pipeline for the
first time, the branch target instruction
is fetched and stored in the jump
cache. This is visible in the trace
window as described here:

When the second nibble of the Misc.
word contains a D (i.e. 7D12), this
means the instruction is placed into
the jump cache. When this nibble
equals B, this signals a jump hit. This
instruction is then taken from the
cache and injected directly into the
pipeline.

Frame -20 contains the first jump and
Frame -14 contains the cached SUB.
The 7D12 and the 7B34 indicate this.
Frame -14 actually has the 7B34 on the
following line. Note there is no data in
either the OA or OD fields. This is
because no fetch occurred.

Two for the Price of One:
The pipeline can allow the CPU to
perform two operations at the same
time and this is also visible in the
Nohau trace. Frames -21, -18 and -15
have two events at the same time.

in the trace memory. The four stages
are fetch, decode, execute and write
back. If an instruction is fetched, but
not executed because of a change in
program flow (usually from a jump or
call), this instruction(s) are flushed
from the pipeline and new ones
loaded.

These flushed instructions are tracked
in order that there is no false trigger-
ing on them. This tracking is dis-
played in the misc. field. Unexecuted
instructions must not be used as
trigger qualifiers.

It is important to be able to detect
pipeline effects since there is a
definite delay from when an instruc-
tion is fetched to when it performs its
operation. The E2 provides enough
information to the emulator in order to
decode this data.

Pipeline Prefetch & Flushes
The screen shot below resulted from
this code sequence being fetched or
executed:
0004CA: 00D8 ADD R13,R8

0004CC: CA00AC02 CALLA cc_strcmp

0004D0: 4840 CMP R4,#0h

0004D2: 3D1B JMPR cc_NZ,1Bh

0004D4: E6FC2050 MOV R12,#5020h

The ADD at 4CA is executed and the
CALLA is taken. Program flow
continues at strcmp at address 2AE.

Frame -54 (green) is the fetch of the
CALLA opcode. It is obviously
executed at frame -50 with the appear-
ance of JMPR instruction, 400 nsec
later. Since each frame records one
word, Frame -54 actually contains the

first word of the CALLA, namely
CA00. The AC02 is put there for
readability. Frame -53 contains the
second word 02AC. The oo2 means a
2 byte movement. Remember, the
C166 is Little Endian so the data came
off the bus in this order and Nohau
swaps it for convenience and readabil-
ity for the user.

Frame -52 and -51 are prefetches of the
CMP (4840) at 4D0 and the JMPR
(3D1B) at 4D2 ! These are flushed
instructions that were prefetched, but
not used as the program flow changed
as a result of the CALLA instruction.
Note all this information is present in
the Nohau trace plus a lot more.
Interestingly, Frame -49 is also a
flushed instruction.

Note the ** in the OA column which
indicates a valid write cycle. Where is
this write ? It is to memory FC00
which is equal to R0 because the CP
register (Context Pointer) points to
FC00. This is the base of the register
bank. Recall R0 is being decremented
by SUB and you can see this in the
OD column on Frames -19 (R0=7) and -
15 (R0=6). Frame -21 (R0=8) is the
initialization by the MOV at address
20A. This is the first event.

During this time there is also a fetch of
the data part of an opcode. In each of
Frames -21, -18 and -15, under the
Opcode column is the second half of
the opcode fetch of the frame before
it.

The Opcode value for Frame -19
contains the data or second word for
the JMPA at Frame -20. It is 020C
swapped to 0C02.

Triggering on Internal Data
The E2 bondout allows triggering on
internal memory areas such as RAM,
SFRs, ROM and XRAM. Programs
can be executed in the internal RAM,
and these instruction fetches can be
cause triggers. Triggering can start or
stop the trace recording, provide an
external output to trigger an oscillo-
scope or logic analyzer or halt
emulation. This is an important
feature. The E2 bondout provides a
way to peek inside the controller to
increase your debugging power.

In the example below, the trace
recording was halted when R0 was
changed to 5. This is impossible to
without a bondout chip or by replicat-
ing the CPU in the emulator hardware
(which is not easy).

A trigger can have up to 50 addresses
ANDed with 50 data values or ranges:
and there are three triggers in the
Nohau EMUL166 ! Plus a Filter to
specify what cycles are recorded in
the trace memory.

Two Chip Emulation
The E2 bondout contains two CAN
modules (hence can support the C164)
and 3 XRAM modules of 2K, 4K and
6K. Peripherals that are not on the E2
such as the C163 SSP are supported
with a C163 on a daughterboard in

Emulation mode. This turns off the
163 CPU but the XBUS peripherals are
still active and available to the E2
through the external bus. New
derivatives can be supported in this
manner. Other peripherals such as the
RTC, timers, CAPCOM and PWM are
included in the E2 and are accessed
normally.

Single Chip Mode
The E2 bondout supports internal
ROM or FLASH devices from 32K to
512K. Remapping of this ROM to
segment 1 is fully supported. The
ROM is simulated with fast RAM in
the emulator. There are menu items in
the emulator software to inform the E2
it is in ROM mode, how much ROM it
must simulate and if remapping is
needed.

The user program must set the
ROMEN bit and perhaps the ROMS1
bit in the SYSCON register during the
initialization period. This is easy to
do. These values can be manually
poked in with the emulator for small
experiments.

The data path for the ROM is 32 bits
and this will be reflected accurately in
the trace memory in the Opcode
column. All ports are available for the
user: none are used for address and
data buses. The appropriate informa-
tion is obtained from the IA and ID
buses.

Emulation Accuracy
The E2 directly supports the C167,
C164 and C161. It can further support
the C165 and C163 and other deriva-
tives except for the SAB 80C166 itself.

The E2 is not an exact copy of any of
these controllers so some differences
will occur. The CPU core is exactly the
same so this reduces differences
substantially.

Conclusion
Experience has shown the E2 to
accurately emulate C166 family
members up to its design speed of 33
MHz. A well designed In-Circuit
Emulator can substantially reduce
your debugging time and grief by
using the power of the E2 bondout
from Siemens. Nohau is committed to
providing the user with all E2 features
as technically feasible.

Robert Boys

VP Technical marketing

Nohau Corporation

Campbell, California

(888) 886-6428

rboys@nohau.com

