Code Coverage on Nohau’s HCS12 and HC12

Full-Featured Emulator
By: Doron Fael — Nohau Corporation
September 1, 2004

This document briefly shows how code coverage is achieved using the Nohau full-featured
emulator for the Motorola/Freescale HCS12 and HC12 family.

Code-Coverage is the emulator’s ability to analyze which source lines and code lines are
executed, which lines are not executed and which lines are partially executed. Code coverage
is needed in applications that require very high reliability, and need to be verified so that
every source line has been successfully exercised at least once, in order to comply with
international standards of software integrity and reliability.

Code-coverage information is collected by the trace-unit of the full-emulator. The trace
monitors the bus activity and decodes the instruction pipeline of the target HCS12 or HC12
processor as it executes the application under test. The trace analyzes which instructions are
executed and which are not in run-time and writes this information to a dedicated memory in
the trace in run-time. The analysis is aware of the HCS12 PPAGE register and can accurately
analyze both non-paged and paged application up to 1Mbyte in size. (On the S12X Family it
can analyze applications up to 8Mbyte in size)

When the collection of the code-coverage information is completed the user can stop the
code coverage. The code-coverage information is then automatically read from the trace
memory to the PC, and the user is asked to input a file-name to save the results of this
iteration of code-coverage information.

The code coverage information is then displayed to the user as shown in the screen-shots in
the following pages:

- Green source lines have been fully executed

- Red source lines have not been executed at all

- Yellow source lines have been partially executed

- White source lines did not produce any assembly code and therefore are not analyzed.

The Seehau software also allows Code-Coverage information from several iterations to be
merged together, to create a complete code-coverage report of many code-coverage
iterations.

In the following screen shot we can see fully executed source lines (Green), non-executed
source lines (Red), partially executed source lines (Yellow), and source line with no
assembly code (White).

As can be seen below, the portion of code that should take care of a change in the minutes
has not been executed in this case, since the code-coverage was ran only for a few seconds
before a transition of the minutes took place. If the user would run the code-coverage for a
longer period, we would see these red (unexecuted) lines becoming green (executed).

. Seehau for EMUL12-PC - [Code Coverage] |_ (O] =]
H File Macro Edit View Mew Bun Breakpointz Tool: Config Code Coverage Window Help - |ﬁ||i|

o B0 o, o T SRC DAT TR Wi REG HELP EHIT [E
WEBDRS S E g% Y SESEEY @5

sop | 2] 9 -

Addresses Source | Surnmar_l,ll

Executed lines | Mot executed lines | Part Exscuted lines | Tatal lines
E 101.0 1000100.00%]
Tatal in program | 80(80.00%) | 19(19.00%) 101.00%) 100

CANOHAUNSEEHAUHCT 2AEXAMPLES\DP2EE B arTime. ¢

181 ;I
o2
183

184 +

185 +

186 +

187 +

188 % change min = 0 ;
189)

130 elze |

191 -
i
i

133
134
195

136 /¢ second step of resetting the CCP.

197 +

199 v|
A I I 3
|E0de Coverage Started |E0verage file:C: e 24 acrohtemp bt

-

|St0pped |St0pped | L

The following screen-shot displays the code-coverage results in the source-window in mixed-
mode display where both the C source lines and the assembly instructions are intermixed
together.

The yellow source line “change min = 0 ;” is partially executed, as only the first of the two
assembly instructions that create this source line has been executed, and the second assembly
instruction was not executed (in the particular case shown here because of a breakpoint).

. Seehau for EMUL12-PC - [Source_1] [_[O]
!Eile Macro Edit Yiew Mew FHun Breakpointz Tool: Config Source ‘Window Help _|E|1|
o 3 BD oy o iy omn TR SRC DAT TR WA REG HELF BT =

BB % F e del SEDEEY ¢ -a
= & B [0 EE G va i 08 5 x|

Aszembly BarTime o |

183

154 =

185 g

186 =

187 B

1388 g change min = 0

L]

189 1

130 zlse

191 g

192 g

193 +

194 ¥

of rasstiing the LOF.

|Line: 188 |Head ohly |E:\N0hau'\5eehauHC1 AEnamples\DPZEEAB arT ime. o[C: el 2hM acroternp bat] |Scope: File: BarTime.c Module: bartime Function: pitr_int
s

|St0pped |Stopped I_ | |

The Code-Coverage information can also be displayed in raw mode as seen below listing the
address ranges of the instruction that have been executed and supplying a summary as seen
below. This information is also available in a text file, to allow further processing outside the

Seehau software if needed (further processing can also be achieved using Seehau’s built in
macro language).

"5 eehau for EMUL12-PC - [Code Coverage] M=l E3
Efile Macro Edit Yiew Mew Bun Breakpoints Tools Config Code Coverage ‘wWindow Help 18] x|
o 3 GO0 oy s iy cmn IR SRC DAT TR Wy REG HELP 7 =
LB s Fdhadved SEDDET o -a
Stop | D”'l gl

Addressesl Source Summary |

[overage File Created: ‘Wed Sep 01 04:47.55 2004 ;I
File Mame: C:\MohautSeshauHCT 25E sampleshDP25ENB arTime. 595

Created : Fri Now 10 21:38:10 2000

File Size; 4803 bytes

Coverage Fange: 2000 - FFFF [EO000D bytes)

Tatal source lines: 100
Executed lines: 80[B0.00%)
Mot executed lines:19[19.00%)
Partially executed lines:1(1.00%)]
Modules:
CANOHALNSEEHALUHC 24EXAMPLES\DP25EAE & Time. o
Lines total: 100
Lines executed:S0[50.00%)
Lines not executed: 19[19.00%)
Lines partially executed; 1[1.00%)]

Coverage range: 00002000-0000FFFF
Addreszes executed(.96%):
00002000-0000201 3
00002016-0000204E
00002052-0000214E
00002159-00002163
00002134-00002196
00002145-00002210
00002221-00002284

-
i} »
|Code Coverage Started |Coverage file: C: e 2% acrohtemp kst
s

|St0pped |St0pped I_ |

