
EMUL196–PC™
User Guide

Edition 1, June 6, 2001

© 2001 All rights reserved worldwide.

Joe Pennese
ICE Technology Nohau Brand Emulator

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © iiii

Contents

About This Guide x

Downloading EMUL196–PC Product Documentation x

 Overview of the EMUL196–PC Emulator System 1

High-Speed Parallel (HSP) Box 2

Universal Serial Bus (USB) Box 2

PC Plug-In/Industry Standard Architecture (ISA) 3

Low-Cost Industry Standard Architecture (LC–ISA) 3

User Interface 3

Quick Start for Installing Your Emulator System 4

Quick Start for Installing the Hardware 5

 Installing and Configuring the Seehau Software 7

Configuring the Seehau Software 7

Running the Configuration Software 8

Purchasers of Emulator and Trace Boards 10

Configuring Address Settings With Windows Operating Systems 11

Configuring Address Settings for the Emulator and Optional Trace Board 11

Information about Windows NT Installation 11

Known Device Driver Conflicts 11

Configuring Address Settings with Windows 95/98 12

Configuring Address Settings with Windows NT 13

Configuring Address Settings with Windows 2000 16

iiiiiiii EMUL196–PC User Guide

 Installing and Configuring the Emulator Board 21

Installing the Emulator Board 22

Emulator Installation Instructions 23

Setting the I/O Address Jumpers: J2 23

Typical PC I/O Addresses 23

Addressing Examples 24

Header JP1 24

Header J4 24

Installing the Emulator Board into the ISA Slot 25

Shadow RAM 25

Quick-Save Settings 266

 Installing and Configuring the Trace Board 27

Hardware Description 27

Installation Instructions 27

I/O Address 27

External Inputs and Controls 28

Tracing Overview 30

Trace Modes 30

Trace Window 31

Trace Menu 32

Trace Configuration 33

Trace Setup Tab 33

Trigger / Filter ConfigurationTabs 35

Entering Addresses and Data 36

Opcode Trigger Mode 36

Data Trigger Mode 37

Data to Trigger On 37

Other Controls for Trace Configuration 38

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © iiiiiiiiiiii

 Accessories and Adapters 39

Type of Adapters 39

Verifying the Orientation of Your Adapter 39

Creating a Shortcut to PicView 40

 Installing and Configuring the Pod Board 41

Overview 41

Features Common to All Pod Boards 41

Stack Pointer 41

Indicator Lights 42

How to Simultaneously Stop Code Execution on Two Emulators 42

Trace Input Pins 42

Resource Selection 42

Power 43

XTAL 43

Microcontroller 43

Clip-Over Adapter 44

Summary of Hardware Configuration 44

Memory Map Configuration Requirements 44

Enough Emulator Memory? 45

Internal Addressing or Single-Chip Mode 45

Replacing Ports: POD196–KR/NT and CA/CB 45

Port Replacement Unit (PRU) 46

Program Performance Analyzer (PPA) 46

Code Coverage 46

iviviviv EMUL196–PC User Guide

 Pod Boards 47

POD196–KC / KD 47

Overview 47

Dimensions 47

Emulation Memory 48

Wait States 48

Headers and Jumpers 48

Procedure to Test 53

Memory Mapping 53

Hardware Breakpoint Setup 54

Helpful Hints for Compiling 54

Download Procedure 55

POD196–KR / NT 56

Overview 56

Dimensions 56

NMI Pin (KR/NT only) 57

PRU 57

Emulation Memory 57

Headers and Jumpers 57

KR/NT Ready Functionality 61

POD196–NP / NU 64

Overview 64

Dimensions 64

Emulation Memory 65

Wait States 65

Headers and Jumpers 66

Symbols in the Trace Window 71

Mapping Memory Using Chip Selects 72

Port Replacement Unit 74

Overview 74

When to Use a Port Replacement Unit 74

Installing the PRU 75

PRU Headers and Jumpers 75

PRU Special Function Registers 76

Design Limitations and Silicon Bugs—PRU 78

PRU Header JP2—Accessing P3, P4 and P5 78

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © vvvv

 Starting the Emulator and Seehau Software 83

Hardware Connection 83

Starting Seehau 84

 Time Program Example 85

Example Program 85

Watching Data in Real-Time with Shadow RAM 86

 Trace Memory Example 89

Overview 89

Running the Example 89

Saving the Configuration 91

 Shutting Down Seehau 93

Steps to Shut Down Seehau 93

Important Software and Hardware Notes 94

Appendix A. Troubleshooting 95

Overview 95

Stack Pointer 96

HSP/USB Box 97

Debugging the Parallel Port 99

Windows NT Users 99

Windows 9x Users 99

Windows 2000 Users 99

ISA 104

vivivivi EMUL196–PC User Guide

If the Emulator Does Not Start When Connected to
the Target System 105

Board I/O Addresses 105

Emulator Configuration Utility Screen 106

PWR and XTAL Jumpers 106

I/O on Address Pins 107

Chip Configuration Bytes (CCBs) 107

Enough Memory 107

The Stack Pointer 107

Interrupt Vectors 108

Nonmaskable Interrupt (NMI) Pin (KR/NT only) 108

Buswidth (CA/CB only) 108

Single-Chip Mode 109

Sample User Program 109

Appendix B. ISO–160 111

PLCC–52–ISO 111

EMUL196/ISO-160 111

SAMTEC/SSQ–117–03–GD 113

Appendix C. Compilers 115

Overview 115

Tasking 115

Compiler Notes 115

Assembler Notes 115

IAR 116

Appendix D. Emulator / Trace Address Examples 117

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © vii viiviivii

Appendix E. Discontinued Pod Boards 121

POD196–CA / CB 121

Overview 121

Dimensions 122

Emulation Memory 122

INST 122

Port Replacement Unit (PRU) 122

Nonmaskable Interrupt (NMI) Pin 123

Headers and Jumpers 123

87C196CB Bondout Errata 126

POD196–EA 134

Overview 134

Dimensions 134

Emulation Memory 135

Addressing RAM 135

8-Bit Mode and BHE Mode 136

Headers and Jumpers 136

Symbols in the Trace Window 140

Memory Mapping 141

Port Replacement Unit (PRU) 141

POD–196LC–KR/NT 142

Overview 142

Dimensions 143

PRU 143

Emulation Memory 143

Headers and Jumpers 143

Glossary 147

Index

Sales Offices, Representatives and Distributors

viiiviiiviiiviii EMUL196–PC User Guide

Product Notes

European CE Requirements
Nohau has included the following information in order to comply with European CE requirements.

User Responsibility
The in-circuit debugger application, as well as all other unprotected circuits need special mitiga-
tion to ensure Electromagnetic Compatibility (EMC).

The user has the responsibility to take required measures in the environment to prevent other
activities from disturbances from the debugger application according to the user and installation
manual.

If the debugger is used in a harsh environment (field service applications for example), it is the
user’s responsibility to control that other activities cannot be disturbed in such a way that there
might be risk for personal hazard/injuries.

Special Measures for Electromagnetic Emission Requirements
To reduce the disturbances to meet conducted emission requirements it is necessary to place a
ground plane on the table under the pod cable and the connected processor board. The ground
plane shall have a low impedance ground connection to the host computer frame. The insulation
sheet between the ground plane and circuit boards shall not exceed 1mm of thickness.

Warnings

 To avoid damage to the pod or to your target, do not connect the pod to your target when
the pod or target power is on.

 When powering up, always power up the emulator first followed by the target system.
When powering down, power down the target system first followed by the emulator.
Failing to do so can cause damage to your target and/or emulator.

 Do not apply power to your system unless you are sure the target adapter is correctly
oriented. Failing to do so can cause damage to your target and/or emulator.

 When using the pod with a target, disable all pod resources that are duplicated on the tar-
get. Failure to disable the pod’s resources can damage the pod or the target or both. This
includes the MCU, the serial port, RAM, crystal, and, particularly, the power supply. If
using the clip to attach to the target, remove the MCU from the pod.

When installing a controller into a pod, never press on the chip body. Press only on the
carrier or cover. Pressing on the chip can bend pins and cause short circuits.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © ixixixix

Minimum System Requirements

CAUTION

Like all Windows applications, the Seehau software requires a minimum amount of free operat-
ing system resources. The recommended amount is at least 40%. (This is only a guideline. This
percentage might vary depending on your PC.) If your resources are dangerously low, Seehau
might become slow, unresponsive or even unstable. If you encounter any of these conditions,
check your free resources. If they are below 40%, reboot and limit the number of concurrently
running applications. If you are unable to free at least 40% of your operating system resources,
contact your system administrator or Nohau Technical Support at support@nohau.com.

The following are minimum system requirements:

• Pentium 200 (Pentium II or faster is recommended)

• Single-Processor System

• Windows 95, 98, NT, 2000, or 2000 ME

• Random Access Memory (RAM)
– For Windows 95/98: 64 MB
– For Windows NT/2000/2000ME: 128 MB

• Two ISA slots in your PC if the optional trace board is purchased, otherwise purchase the
HSP or USB box.

xxxx EMUL196–PC User Guide

About This Guide

The EMUL196–PC User Guide describes how to use the EMUL196–PC emulation system with
the Seehau graphical user interface. This guide is intended for both novice and advanced users.

The EMUL196–PC is a PC-based emulator for the Intel 80C196 family of microprocessors.
This guide helps you to get started with the basics of setting up, configuring, and running the
Seehau software and the emulator. If you have any questions contact Nohau Technical Support
at support@nohau.com or refer to the Sales Offices, Representatives and Distributors list at the
end of this guide.

Online context sensitive Help is also available from the Seehau software by pressing the F1 or the
Help keys, depending on the type of keyboard you have.

The EMUL196–PC User Guide introduces the following tasks:

• Installing and Configuring the Seehau Software

• Installing and Configuring the Emulator

• Installing and Configuring Trace Boards

• Types of Adapters

• Installing and Configuring Pods

• Starting the Emulator and Seehau Software

• Time Program Examples

• Trace Memory Example

• Macro Example

• Shutting Down Seehau Software

• Troubleshooting

• Hex Pin Addressing

• Glossary

Downloading EMUL196–PC Product Documentation

To download an electronic version of this guide, do the following:

1. Open Nohau’s home page at www.nohau.com.

2. Click Publications.

3. Click Nohau Manuals.

4. Scroll down to EMUL196–PC. Then select EMUL196–PC to download a PDF version
of this guide.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 1111

 Overview of the EMUL196–PC
Emulator System

The basic hardware for the EMUL196–PC emulator system includes the following:

• Emulator board—plugs into an ISA slot inside the PC, HSP or USB box.

• Standard or Data trace board (optional)—plugs into an ISA slot inside the PC, HSP or USB
box and connects to the emulator board through two short ribbon cables.

• Pod board—the device that allows you to emulate the device under development.

• Five-foot twisted-pair ribbon cable—connects the emulator and pod.

• Combination 25-pin to 50-pin cable (part number CBL-A-LC25/50) for the LC–ISA only.

• Target adapter—allows you to connect the pod board to your target system.

To connect to your target system, the pod board usually requires an adapter. To determine the
adapter board that your pod requires, check the price list, your representative or Nohau Technical
Support at support@nohau.com.

The EMUL196–PC emulator consists of an emulator and a pod board. The pod board typically
requires an adapter to connect to your target system. An optional trace board can be added to all
systems except for the low-cost systems (LC–ISA) for advanced tracing capabilities. Four system
configurations are available to suit your needs:

• High-Speed Parallel (HSP) Box connects to the parallel printer port. See the following
“High-Speed Parallel (HSP) Box” section.

• Universal Serial Bus (USB) Box. See the following “Universal Serial Bus (USB) Box”
section.

• PC Plug-In/Industry Standard Architecture (ISA). See the following “PC Plug-In/Industry
Standard Architecture (ISA)” section.

• Low-Cost Industry Standard Architecture (LC–ISA). See the following “Low-Cost Industry
Standard Architecture (LC–ISA)” section.

You can configure the emulator hardware to your requirements with various jumpers. For details
on configuring your emulator board, refer to Chapter 3, “Installing and Configuring the Emulator
Board.” For details about the optional trace board, refer to Chapter 5, “Installing and Configuring
the Trace Board,” or go to Seehau Help in the software.

Chapter 1. Overview of the EMUL196–PC Emulator SystemChapter 1. Overview of the EMUL196–PC Emulator SystemChapter 1. Overview of the EMUL196–PC Emulator SystemChapter 1. Overview of the EMUL196–PC Emulator System

2222 EMUL196–PC User Guide

Figure 1. HSP Box Connected to a Pod Board and Laptop Computer

High-Speed Parallel (HSP) Box

The HSP box lets you use the in-circuit emulator and optional trace board where no ISA slots are
available. If purchased as a set, Nohau company personnel will mount the emulator board, HSP
card, and optional trace board in the HSP box chassis. The optional trace board connects to the
emulator board through two ribbon cables. The pod board connects to the emulator board in the
HSP with a five-foot ribbon cable. The HSP card connects to the PC’s parallel printer port. This is
one of the most portable methods of connection when used with a laptop computer and gives you
full trace capability.

Universal Serial Bus (USB) Box

When using a laptop computer, the USB box provides one of the most portable methods of con-
nection and allows for full trace capability. A USB port is an external peripheral interface standard
for communication between a computer and external peripheral over a cable that uses biserial
transmission. You can use the USB box to run the in-circuit emulator and optional trace board
when ISA slots are unavailable in your computer.

Note
When using the USB option, you must install the Seehau software first before
connecting the Nohau hardware. This allows the computer to recognize the
proper driver for the hardware. The USB option is not supported by Windows NT.

It is anticipated that the USB option will eventually replace the parallel port interface.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 3333

PC Plug-In/Industry Standard Architecture (ISA)

The emulator ISA board is plugged into an ISA slot in your PC, USB or HSP and is connected
with a five-foot cable to a device-dependent pod board. The optional trace board can also be
plugged into the PC, HSP or USB box and is connected to the emulator board through two short
ribbon cables.

Note
If the optional trace board were purchased for PC installation, you would need to
ensure that your computer motherboard has at least two open ISA slots or you will
need to purchase the HSP or USB box.

Low-Cost Industry Standard Architecture (LC–ISA)

The EMUL/LC–ISA board is an 8-bit PC card that fits into any ISA slot in your PC. This board
must be connected to a pod board to operate. Low cost emulators do not have Shadow RAM, or
provision for a real-time trace (or the ability to add a trace board). The maximum frequency is set
by the frequency limit on the pod board. The connection for the board to pod is through a 25-pin
connector from the board to a 50-pin connector to the pod (part number CBL–A–LC25/50).

User Interface

The emulator is configured and operated by the Seehau user interface. Seehau is a high-level
language user interface that allows you to perform the following tasks:

• Load, run, single-step and stop programs based on C or Assembly code.

• Set triggers and view trace (with optional trace board).

• Modify and view memory contents including Special Function Registers (SFRs).

• Set software and hardware breakpoints.

• Analyze code with Program Performance Analysis (PPA).

Chapter 1. Overview of the EMUL196–PC Emulator SystemChapter 1. Overview of the EMUL196–PC Emulator SystemChapter 1. Overview of the EMUL196–PC Emulator SystemChapter 1. Overview of the EMUL196–PC Emulator System

4444 EMUL196–PC User Guide

Quick Start for Installing Your Emulator System

The following illustration shows the major steps for installing and configuring the
EMUL196–PC. For details, refer to the chapter and/or pages referenced in each step.

Figure 2. Steps for Installing and Configuring the EMUL196–PC and Seehau Software

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 5555

Quick Start for Installing the Hardware

The following illustration shows the major steps for installing the EMUL196–PC hardware.

Figure 3. Steps for Installing the EMUL196–PC Hardware

Chapter 1. Overview of the EMUL196–PC Emulator SystemChapter 1. Overview of the EMUL196–PC Emulator SystemChapter 1. Overview of the EMUL196–PC Emulator SystemChapter 1. Overview of the EMUL196–PC Emulator System

6666 EMUL196–PC User Guide

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 7777

 Installing and Configuring the
Seehau Software

To install the Seehau software, do the following:

1. Locate your Seehau CD and insert the CD into your CD ROM drive. The installation process
will start automatically.

2. Follow the instructions that appear on your screen.

Note
If the installation does not start automatically, you probably have your Windows
Autorun feature disabled. You will then need to use Windows Explorer and navigate
to the CD root directory or right-click on the drive where the CD is located. If you
navigate to the root directory find Autorun.exe and double-click on it. If you
right-click on the drive where the CD is located, select AutoPlay to start the
install process.

Configuring the Seehau Software

When first started, Seehau loads a configuration file called Startup.bas This file is created by the
Seehau Configuration Program, which stores Startup.bas in the following directory:
C:\Nohau\Seehau196\Macro

The Seehau software automatically starts Seehau Config if it does not find the startup file.

You do not need to have the emulator connected to the PC to run the Seehau Configuration Pro-
gram. However, for the Seehau regular executable to operate, the emulator must be connected with
the jumpers set correctly.

Get familiar with the emulator in stand-alone mode (not connected to a target system) or the demo
mode before connecting to a target hardware system. The added complications of the target hard-
ware might cause you problems at this time. Once you have gained some skills at operating the
emulator, then connect to your target. To operate in Demo mode select Start/Programs/Seehau
196/Demo.

Chapter 2. Installing and Configuring the Seehau SoftwareChapter 2. Installing and Configuring the Seehau SoftwareChapter 2. Installing and Configuring the Seehau SoftwareChapter 2. Installing and Configuring the Seehau Software

8888 EMUL196–PC User Guide

Figure 4. Emulator Configuration (Communications) Dialog Box

Running the Configuration Software

1. Click the Seehau Config icon on your desktop. You do not need the emulator connected
at this time.

2. Enter the correct settings as shown in the Emulator Configuration dialog box (Figure 4).

 WARNING

To avoid damage to the pod or to your target, do not connect the pod to your target when pod or
target power is on.

3. Change the settings as indicated. Figure 4 shows the settings used if you are using the HSP
box. Figure 5 shows the settings for the ISA card. You enter the address of your computer’s
internal communication link in the Emulator Board Address text box. For the ISA card, the
most common address is 200. If the computer has a game port or joy stick, it is typically lo-
cated at address 201H. If this is the case, you will need to change the address of the emulator
board to an unused hardware address. You can change this setting on the board. If you are us-
ing the HSP, this address is not applicable. The HSP box uses address 378 which, represents
the LPTI port on your PC.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 9999

Figure 5. Emulator Configuration Dialog Box for the ISA

Figure 6. Hardware Configuration

Chapter 2. Installing and Configuring the Seehau SoftwareChapter 2. Installing and Configuring the Seehau SoftwareChapter 2. Installing and Configuring the Seehau SoftwareChapter 2. Installing and Configuring the Seehau Software

10101010 EMUL196–PC User Guide

4. When all the information has been entered, click Next to open the screen as shown in
Figure 6. For information on the other settings, refer to the Intel handbook under the “Chip
Configuration Register” section.

5. The uP Clock is the internal CPU clock. This setting is used only for the calculation of the
trace timestamp. It has no effect on the operating speed of the emulation controller. The time
entered here should be the internal processor speed (not necessarily the crystal speed).

6. Click Next to enter the data. Click Yes at the Are you finished? prompt.

7. The Seehau Configuration Program creates Startup.bas and Seehau is now configured to run
your emulator.

8. The Seehau Configuration Program closes.

If you have completed these steps without any errors, you are ready to run the Seehau user inter-
face after you have connected and powered up the EMUL196–PC emulator.

 WARNING

The target power must never be on when the pod is powered off. To avoid damage, power the pod
and target on and off in the following sequence. To power up: (1) Power on the pod, then (2) Power
on the target. To power down: (1) Power off the target, then (2) power off the pod.

Purchasers of Emulator and Trace Boards

If you are purchasing the emulator board and the trace board, you might want to consider the
following points:

• You will need a PC with at least two ISA slots. These slots should be close enough to allow
you to connect the short ribbon cables that connect the boards or consider purchasing the HSP
or USB box.

• It will be easier to connect the short ribbon cables before installation. Waiting until the
boards are already installed can result in scraped and/or bloody knuckles due to the
restricted work area.

• If you purchase the trace board after the emulator board, you should consider removing the
emulator board, making the ribbon connections, and then installing the boards together.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 111111

Configuring Address Settings with Windows
Operating Systems

The following applies to all Windows operating systems:

• Default Address Ranges:

– Emulator Board: 200H
– Trace Board: 208H

• Default Address Settings for the HSP Box:

No address conflict is possible when installing the HSP box with any Windows operating system.
Use the default address ranges (listed above).

Skip to “Installing Emulator Boards” later in this chapter.

Configuring Address Settings for the Emulator and Optional
Trace Board
The following sections provide details about configuring address settings for the emulator and
optional trace board for each Windows operating system. Refer to the section that covers your
specific operating system.

Information about Windows NT Installation
When installing under Windows NT you will be changing the registry and installing our kernel
mode driver. You must do this from an account with Administrator privileges.

One of the causes of the message Incorrect Parameter either in the system log or from the Devices
application is that there might be a device already installed with the address given for the emula-
tor.

Known Device Driver Conflicts
Nohau is aware of potential device driver conflicts with certain network cards running on
Novell/Netware networks. Problems have been reported with both 3COM ISA network cards
and some Novell network cards. Most of these problems have been experienced when running
Windows NT or Windows 2000 operating systems.

Possible SymptomsPossible SymptomsPossible SymptomsPossible Symptoms

• When starting Seehau, communication with the network stops. (You will be unable to access
resources on the network.)

• Seehau will not start.

A possible solution might be to change your network card. Nohau Technical Support has not
tested all network cards, although some customers have reported that the following network cards
have resolved this conflict:

• Intel Ether Express Pro 10/100 ISA
• 3COM Etherlink III (905B or later) 10/100 PCI
• Bay Networks NetGear FA310TX 10/100 PCI

Chapter 2. Installing and Configuring the Seehau SoftwareChapter 2. Installing and Configuring the Seehau SoftwareChapter 2. Installing and Configuring the Seehau SoftwareChapter 2. Installing and Configuring the Seehau Software

12121212 EMUL196–PC User Guide

Configuring Address Settings with Windows 95/98

Checking Your PC for Default Address ConflictsChecking Your PC for Default Address ConflictsChecking Your PC for Default Address ConflictsChecking Your PC for Default Address Conflicts

1. Click the Start menu, and select Settings.

2. Click Control Panel.

3. Double-click System. The Systems Properties dialog box opens.

4. Click the Device Manager tab.

5. Click Properties.

6. Click Input/Output. Scroll the contents of the window to verify that no device is listed within
that range.

Alternative AddressingAlternative AddressingAlternative AddressingAlternative Addressing
If you see a device present in the default address range for your emulator or trace board, do the
following:

1. Beginning at the address 200H, scroll down to look for an unused address range:
– Recommended for emulator boards are addresses 200H, 210H, and 240H.
– Recommended for trace boards are addresses 208H, 218H, and 248H.
– The trace board address must always be at least 8H above the emulator board

(i.e., 200/208, 210/218, 240/248).
2. When you locate an unused address range, make a note of the base address of the range for use

when configuring Seehau.

3. Refer to Appendix D, “Emulator/Trace Address Examples” to reconfigure the base address of
your board.
The base address must be an even multiple of 10 (such as 200 or 210). If you have to change
the address of the emulator or trace board, be sure to change both the board jumpers and the
jumper settings in the software.

Figure 7. System I/O Resources

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 13 131313

Configuring Address Settings with Windows NT

• First, check your administrative privileges.

• Then check your PC for default address conflicts.

Checking Administrative PrivilegesChecking Administrative PrivilegesChecking Administrative PrivilegesChecking Administrative Privileges

1. Click the Start menu, and select Programs.

2. Select Administrative Tools, and click User Manager. The User Manager dialog box opens
(Figure 8).

3. In the bottom half of the dialog box, double-click Administrators. The Local Group Properties
dialog box opens displaying a list of login names (Figure 9).

Figure 8. User Manager Dialog Box for Windows NT

Figure 9. Local Group Properties Dialog Box for Windows NT

Chapter 2. Installing and Configuring the Seehau SoftwareChapter 2. Installing and Configuring the Seehau SoftwareChapter 2. Installing and Configuring the Seehau SoftwareChapter 2. Installing and Configuring the Seehau Software

14141414 EMUL196–PC User Guide

4. Look for your login name in the list of names. If your login name is not present, you are not set
up with administrative privileges. Contact your System Administrator to update your privi-
leges or give you the administrator’s password.

Checking Your PC for Default Address ConflictsChecking Your PC for Default Address ConflictsChecking Your PC for Default Address ConflictsChecking Your PC for Default Address Conflicts

1. Click the Start menu, and select Programs.

2. Select Administrative Tools, and click Windows NT Diagnostics. The Windows NT
Diagnostics window opens (Figure 10).

3. Click the Resources tab.

4. Click I/O Port.

5. Check the I/O resources listed to verify that no device appears in a default address range.

Alternative AddressingAlternative AddressingAlternative AddressingAlternative Addressing

If you see a device present in the default range for your emulator or trace board, do the following:

1. Beginning at the address 200H, scroll down to look for an unused address range:
– 200H, 210H, or 240H for the emulator board.
– 208H, 218H, or 248H for the trace board.

Figure 10. NT Diagnostics Window

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 15 151515

2. When you locate an unused address range, make a note of the base address of the range for use
when configuring Seehau.

3. Refer to Appendix D, “Address Examples” to reconfigure the base address of your board.

Driver TroubleshootingDriver TroubleshootingDriver TroubleshootingDriver Troubleshooting

• If you get a Service or driver failed error message when rebooting, you probably have a
resource conflict.

• If you get a create file failed error message upon execution, the device driver did not
properly start.

Nohau196 Device DriverNohau196 Device DriverNohau196 Device DriverNohau196 Device Driver

After installation, Windows NT Diagnostics will show the Nohau196 device driver present in the
upper I/O range (FFxx). After launching Seehau, the driver is reassigned to the actual address
ranges. In the Control Panel Devices window (Figure 11), you will see three columns: Device,
Status, and Startup.

• Device: lists the Nohau device driver

• Status: displays Started

• Startup: displays Automatic

Figure 11. Control Panel Devices Window

Chapter 2. Installing and Configuring the Seehau SoftwareChapter 2. Installing and Configuring the Seehau SoftwareChapter 2. Installing and Configuring the Seehau SoftwareChapter 2. Installing and Configuring the Seehau Software

16161616 EMUL196–PC User Guide

Configuring Address Settings with Windows 2000

• First, check your administrative privileges.

• Then check your PC for default address conflicts.

Checking Administrative PrivilegesChecking Administrative PrivilegesChecking Administrative PrivilegesChecking Administrative Privileges

1. Click the Start menu, and select Settings. Click Control Panel.

2. From the Control Panel, double-click Users and Passwords. The Users and Passwords
window opens (Figure 12).

3. Click the Advanced tab. Now click the Advanced button. The Local Users and Groups
window opens (Figure 13).

Figure 12. Users and Passwords Window

Figure 13. Local Users and Groups Window

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 171717

Figure 14. Local Users and Groups Window with Groups Folder

4. Click the Groups folder located in the left region of the window beneath Local Users
and Groups.

5. Double-click the Groups folder. A list of groups appears in the right region of the window
(Figure 14).

6. Double-click Administrators. Your user name should be listed.

Note
If you are not an administrator, ask your System Administrator to add you to this list.

Figure 15. Administrator Dialog Box

Chapter 2. Installing and Configuring the Seehau SoftwareChapter 2. Installing and Configuring the Seehau SoftwareChapter 2. Installing and Configuring the Seehau SoftwareChapter 2. Installing and Configuring the Seehau Software

18181818 EMUL196–PC User Guide

Checking Your PC for Default Address ConflictsChecking Your PC for Default Address ConflictsChecking Your PC for Default Address ConflictsChecking Your PC for Default Address Conflicts

1. Right-click the My Computer icon on your desktop, and select Properties. The System
Properties window opens (Figure 16).

Figure 16. System Properties Window

Figure 17. Device Manager Window

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 191919

2. Click the Hardware tab. Then click Device Manager. The Device Manager window opens
(Figure 17).

3. In the Device Manager window, select the View menu. Then click Resources by Type.
A window opens that shows the system resources (Figure 18).

4. Double-click Input/Output (I/O).

5. Check the I/O resources listed to verify that no device appears in the default address range for
these devices.

Figure 18. System Resources

Chapter 2. Installing and Configuring the Seehau SoftwareChapter 2. Installing and Configuring the Seehau SoftwareChapter 2. Installing and Configuring the Seehau SoftwareChapter 2. Installing and Configuring the Seehau Software

20202020 EMUL196–PC User Guide

Alternative AddressingAlternative AddressingAlternative AddressingAlternative Addressing

If you see a device present in the default address range for your emulator or trace board, do the
following:

1. Beginning at the address 200H, scroll down to look for an unused address range:
– 200H, 210H, or 240H for the emulator board.
– 208H, 218H, or 248H for the trace board.

2. When you locate an unused address range, make a note of the base address of the range for use
when configuring Seehau.

3. Refer to Appendix D, “Address Examples” to reconfigure the base address of your board.

Driver TroubleshootingDriver TroubleshootingDriver TroubleshootingDriver Troubleshooting

For details, see Appendix A, “Troubleshooting Tips.”

• If you get a Service or driver failed error message when rebooting, you probably have a
resource conflict.

• If you get a create file failed error message upon execution, the device driver did not properly
start. Review the steps in this section again. You can use Windows 2000 System Properties to
recheck that your port address has no conflicts.

Nohau196 Device DriverNohau196 Device DriverNohau196 Device DriverNohau196 Device Driver

To verify that the Nohau196 device driver is properly installed, do the following:

1. From the Start menu, select Programs. Select Accessories, then System Tools.

2. Click System Information. The System Information window opens.

3. Double-click the Software Environment folder.

4. Double-click the Drivers folder. A list of active drivers appears. Refer to the Name column
and scroll down to nohau196.

5. Verify the driver is running. In the State column, you should see the word Running. In the
Status column, you should see OK.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 212121

 Installing and Configuring the
Emulator Board

1. If you are using the ISA card inside the PC, verify that the jumpers on the board are set for
200H (the default address). If the computer has a game port or joy stick, it is typically located
at address 201H. If this is the case, you will need to change the address of the emulator board
to an unused hardware address.

2. If you have the HSP box, connect the parallel cable to the parallel port of the PC or laptop.
Also, connect the 5-volt power supply. The default parallel port is LPT1, located at the hard-
ware address 378H within the PC.

3. Connect the five-foot ribbon cable from the emulator board to the pod.

Key Key Slot

Figure 19. Connecting the Emulator to Your Pod Board with the Ribbon Cable

Note
The connectors of the ribbon cable are identical so it does not matter which end is
connected to the pod or the emulator board. Although the ribbon cable connecting
the emulator to the pod board is keyed, it is possible to force the key on the conec-
tor the wrong way. Caution should be used when making the connection to ensure
that the key and slot line correctly.

Although not part of the emulator board, you might want to ensure the following steps as you hook
up and configure the emulator board.

1. Verify the pod is stand-alone (not connected to the target), and that the power jumper is in-
serted and the crystal jumpers are set for internal crystal.

2. There are four address jumpers: EA16, EA17, EA18, and EA19. The settings for these jumpers
must match the number of address lines selected when the hardware screen was configured.

Chapter 3. Installing and Configuring the Emulator BoardChapter 3. Installing and Configuring the Emulator BoardChapter 3. Installing and Configuring the Emulator BoardChapter 3. Installing and Configuring the Emulator Board

22222222 EMUL196–PC User Guide

N
O

H
A

U
 C

O
R

P .
 E

M
U

L-
PC

/E

JP1 J2

JP3JP2

J4
S/

N

REV. D

A3 A9

Pin 1

Figure 20. Rev. D Emulator Board

Installing the Emulator Board

The EMUL196–PC emulator board supports the following pod boards for different members of the
Intel 80C196 microcontrollers:

• POD196–KR/NT

• POD196–NP/NU

• POD196–KC/KD

Note
Pods 196–CA/CB, 196–NP, and 196–EA have been discontinued. For information
about these pod boards, see Appendix E, “Discontinued Pod Boards.”

As Intel introduces other members of the 80C196 family of microcontrollers, corresponding pod
boards will be introduced and supported by EMUL196–PC. Call Nohau Technical Support for the
current list of available pod boards and supported controllers.

The EMUL196–PC emulator board is an 8-bit PC card that fits into any ¾ length slot. It contains
64K, 256K, or 1 MB of Shadow RAM, bus interface logic, trace board support logic, and the logic
needed to communicate with the pod. The jumpers on the emulator board control two things:

• The address used to communicate with the Host PC.

• The maximum communication rate of the target.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 232323

Emulator Installation Instructions

Setting the I/O Address Jumpers: J2

Each pair of pins in the address header J2 represents one bit in the 10-bit address. Address bits
0, 1, and 2 represent addresses within the eight consecutive addresses, and they do not have pin
pairs to represent them. This leaves six address bits (pin pairs) to set with jumpers: A3 through A9.
Shorting two pins represents a zero in the address. A pair of pins with no jumper represents
a one.

The emulator board address jumpers have been factory preset to 200H for a typical system. The
following table shows how a typical system uses its address locations. If your system is presently
using location 200H, you must find an alternate address location and make appropriate changes to
the jumpers and software. If your emulator board is in an external HSP/USB box, you should use
the default address regardless of the I/O address being used in the computer.

Typical PC I/O Addresses

Hex Location Typical Use
000 – 0FF Used by system

1F0 – 1F8 Fixed disk

200 – 207 Game adapter

210 – 213 Expansion unit

278 – 27F Parallel printer Port 2

2F8 – 2FF Secondary asynchronous printer adaper

300 – 31F Prototype card

320 – 323 Fixed disk controller

360 – 36F Reserved

378 – 37A Printer adapter

380 – 38F Alternate binary synchronous communications adapter, SDLC adapter

3A0 – 3AF Primary binary synchronous communications adapter

3B0 – 3BF Monochromatic display and printer adapter

3C0 – 3CF Reserved

3D0 – 3DF Color/graphics monitor adapter

3F0 – 3F7 Floppy disk controller

3F8 –3FF Primary asynchronous printer adapter

If the current emulator board address conflicts with any other hardware, find free address space
between 210 and 3FFH. The emulator board requires eight consecutive addresses. If you change
the address and/or memory jumpers, the software address settings must also be changed.

Chapter 3. Installing and Configuring the Emulator BoardChapter 3. Installing and Configuring the Emulator BoardChapter 3. Installing and Configuring the Emulator BoardChapter 3. Installing and Configuring the Emulator Board

24242424 EMUL196–PC User Guide

200 HexPC Bus Address
Pin labels

Jumper Settings

A3 A9
208 Hex

A3 A9
300 HexPC Bus Address

Pin labels

Jumper Settings

A3 A9
3F8 Hex

A3 A9

Factory Default

Figure 21. Emulator I/O Address Header J2

Addressing Examples

Figure 21 shows the four different address configurations for the emulator board.

Header JP1

This header is not currently implemented on EMUL196–PC. Leave the jumper in the default posi-
tion, between Pins 3 and 4.

Header J4

The following paragraph applies only to emulator boards with 1 MB of Shadow RAM. Emulators
with less than 1 MB of Shadow RAM must leave the jumper between Pins 2 and 3.

On some 8xC196 controllers, the same CPU pin can carry a port E I/O signal, or AD19, an address
bit. Target designs with 512K or less of RAM or ROM can use the AD19/EP.3 pin to carry an I/O
signal instead of the address signal. For emulator boards with 1 MB of Shadow RAM, insert the
header between Pins 1 and 2. This is the default position for 1 MB Shadow RAM emulator boards.
If your emulator board has 1 MB of Shadow RAM, and Pin AD19EP.3 carries an I/O signal, then
short Pins 2 and 3 of Header J4. Do not change the jumper for Header J1.

 WARNING

Always turn on the PC before powering to the target. Always turn off the target power before turn-
ing off the PC power. Always turn off the PC before connecting or disconnecting the ribbon cable to
the emulator or pod board, and before connecting the pod to the target. Not doing so could damage
the CPU, the emulator, the pod or the target.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 252525

Installing the Emulator Board into the ISA Slot

After the jumpers are set, do the following with the PC power off:

1. Remove the PC cover.

2. Insert the emulator board into any free slot.

3. Close the PC cover.

4. Connect the ribbon cable to the emulator board.

5. Connect the pod to the ribbon cable.

Shadow RAM

The EMUL196–PC emulator board contains either 64K, 256K, or 1 MB of static RAM used to
shadow or duplicate the contents of the target RAM. Every time the CPU generates a WRITE bus
cycle while running the target application, the pod captures the address/data pair and the emulator
board writes that data to the same address in Shadow RAM. The Seehau application can simulta-
neously read Shadow RAM. This allows the software to display values written by the application
without interrupting emulation.

Note
Shadow RAM will capture external data writes while you are running your code.
Shadow RAM will not capture the bus activity while the pod is executing monitor
code. Loading code, filling memory, and editing registers will not update Shadow
RAM.

Notice the emulator board has 64K of Shadow RAM, and the application data area RAM is larger.
The emulator board has 64K of Shadow RAM. If your microcontroller accesses addresses above
64K, the data WRITE address will be masked off to 16 bits when reaching the Shadow RAM. The
Shadow RAM address logic strips off the bits above bit 15. The Shadow RAM address 100H will
be modified by WRITEs to application RAM addresses 100H, 10100H, and 20100H. Similarly, if
the emulator has 256K of Shadow RAM, WRITEs to application RAM addresses 100H, 40100H,
and 80100H will all update the same Shadow RAM byte (at address 100H). This is true for emu-
lation RAM, RAM on the target, or even memory-mapped I/O devices. Ordering an emulator
board with 256K of Shadow RAM will minimize the amount of overlaid RAM. However, targets
that have more than 256K of RAM, overlaying will still be possible. Ordering an emulator board
with 1 MB of Shadow RAM will eliminate this problem for all 8xC196 applications.

Chapter 3. Installing and Configuring the Emulator BoardChapter 3. Installing and Configuring the Emulator BoardChapter 3. Installing and Configuring the Emulator BoardChapter 3. Installing and Configuring the Emulator Board

26262626 EMUL196–PC User Guide

Quick-Save Settings

Due to the instability of PCs and operating systems, it is important to take precautions after setting
up your hardware and software. Rather than wait until you have finished doing your tests on the
target system you might want to save the emulator settings to avoid unnecessary repetition in case
of system failure. The quick way to avoid this problem is to do the following:

1. To save the emulator configuration, click the Config option and select Environment.

2. From the Environment Configuration menu, check the Use Start-up Dialog? (this prompts
you to select the preferred startup file when selected) under the Preferences tab. This option
is located in the Miscellaneous section.

3. Select Apply or OK. The Environment Configuration dialog box will close.

4. Exit from the Seehau software.

5. The Save Settings dialog box opens where you can choose the filename for the newly created
macro. Enter a filename of your choosing and click Save.

The macro is ready to use and will accurately recreate your emulator configuration settings.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 272727

 Installing and Configuring the
Trace Board

Hardware Description

The trace board is a full length ISA-style bus card and contains the RAM needed to record a
record of the data accessed and instructions executed. The emulator board has the logic and con-
nectors necessary to support the trace board. It can occupy any 8- or 16-bit slot as long as the two
ribbon cables can reach from the emulator card to the trace card. When inserted into a 16-bit slot,
it connects with the additional power and ground lines in the other connector on the motherboard.
The card includes 104 bits of RAM for each trace record. There are two types of trace boards for
the EMUL196–PC: standard and data. Standard trace boards are available with 32K of trace mem-
ory, data trace boards are available with either 128K or 512K of trace memory.

Installation Instructions

The trace board includes three connectors on the back for inputting and outputting signals. Figure
23 shows how the connectors for the DB-25 connector and the two BNC connectors are wired.

I/O Address

Like the emulator, the trace board uses eight consecutive I/O addresses for communicating with
the PC. The jumpers on the card are set at the factory to allow the trace board to use the I/O ad-
dresses that start at 208H. Confirm either that these addresses are available on your PC or find
eight consecutive free addresses and set the address jumpers on Header J1 accordingly. On the
trace board, A3 is on the right; on the emulator board, A3 is on the left. (See the examples in
Figure 21 and Figure 22.)

Figure 22. Trace Board I/O Address Header J1

Chapter 4. Installing and Configuring the Trace BoardChapter 4. Installing and Configuring the Trace BoardChapter 4. Installing and Configuring the Trace BoardChapter 4. Installing and Configuring the Trace Board

28282828 EMUL196–PC User Guide

After the trace board address jumpers are set, do the following:

1. Turn off the PC power or HSP/USB box power, remove the cover, and slide the board into
the chosen ISA slot (the ISA slots must be next to each other). Make sure the board is fully
inserted. There are two identical ribbon cables. Due to the length and shape of the cables, it
is impossible to attach both cables to the incorrect connector.

Note
It might be easier to remove the emulator board from the chassis and attach the
cables before reinserting the boards into their respective slots. The tightness around
the boards and the pins can result in skinned or bloody knuckles if not careful.

2. Make sure the pins are fully inserted into the connectors so there are no exposed pins, there
are no twists in either cable, and the cables do not cross. Be certain the connectors are not off-
set vertically or horizontally. The most common error is to insert only one row of pins into the
connector. This can damage either of the boards. Double-check all four connectors for any ex-
posed pins before continuing.

3. After the ribbon cables are attached, close the PC or HSP/USB box cover, power up the PC or
HSP/USB box, and start Windows.

4. Start the Seehau196 program.

5. Verify that the Seehau196 configuration is set up to recognize the trace board. This is done in
the Seehau196 Configuration Program.

6. Verify that Trace Type indicates Trace (Yes), and the I/O address is correct. This address box
needs to contain the same address as the jumpers in Header J1 as mentioned previously.

Note
If the hex address was changed for the emulator board, the hex address for the
trace board must be changed accordingly.

External Inputs and Controls
The trace board records eight external digital inputs with every bus cycle. These signals are input
through the DB-25 (also called a D connector) connector on the back of the trace board. To sim-
plify providing these signals to the trace board use the color-coded set of micro-clips provided
with the trace board. (The 25-conductor ribbon cable is wired straight through and can be used to
extend the reach of the micro-clips.)

Note
As external inputs and controls are sampled at every frame, you cannot expect
higher time resolution than the sample frame rate.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 292929

VCC

TRIGGER IN

TRIGGER OUT

23
24

25
22

21
20

19
18

17
16

15
3

2
6

8
14

12
13

11
1

5
7

9
4

10

Grey (Ground)

Green-White
Red-White

Clip colors:

10K

IN

OUT

Bit 4Yellow

Bit 1Brown
Bit 2Red
Bit 3Orange

Bit 5Green

Bit 0Black

Bit 6Blue
Bit 7Violet

Figure 23. Trace Board Connectors

Two of the micro-clips duplicate the trigger controls found in the BNC connectors: /TRIGGER_IN
and /TRIGGER_OUT. (If your board does not have BNC connectors
and you would like them, contact Nohau Technical Support at support@nohau.com.)

Note
The signal voltage levels for /TRIGGER_IN and /TRIGGER_OUT are inverted.
A transition from +5 volts to 0 volts on the /TRIGGER_OUT micro-clip indicates
that a trigger has occurred. The signal is held low until the trace board starts
recording again.

In the bracket of the trace board there is a D connector. Figure 23 illustrates the signals in the
D connector.

The /TRIGGER_IN micro-clip controls triggers in one of two ways, depending on how the trace
board is configured.

To prevent triggering when this line is held low, select the Inhibit Trigger option in the Trace Con-
figuration dialog box. As long as this line is held low, the last trig event repeat count will not
count down, events that satisfy the trigger conditions will not cause a trigger, and trace recording
will not stop.

Chapter 4. Installing and Configuring the Trace BoardChapter 4. Installing and Configuring the Trace BoardChapter 4. Installing and Configuring the Trace BoardChapter 4. Installing and Configuring the Trace Board

30303030 EMUL196–PC User Guide

You can also select the Assert Trigger option. The transition to ground on the /TRIGGER_IN line
will cause a trigger on the trace board and stop trace recording. Similar to a trigger caused by a bus
cycle, this external trigger can cause a hardware break if the Break on Trig option is selected. (On
the Rev. C boards, the /TRIGGER_IN signal is a trigger inhibit signal.)

Tracing Overview

A trace history is a time ordered recording of bus cycles (with some other helpful information).
Events that do not affect the CPU external bus, such as testing a CPU internal register, are not re-
corded. Events that do affect the bus will only be recorded if the trace setup is instructed to record
those types of events. All tracing emulators record bus events and not actual instruction execution,
so they must have some way to process the instruction pipeline. The trace board includes pipeline
decoding and marks opcode fetches that are not executed. Therefore, the display software can
show the trace records as though the pipeline does not exist. Optionally, the software can display
the uncorrected bus cycles just as recorded.

Trace Modes

To allow selective recording, three trace modes are available:

• Normal Mode—records everything.

• Window Mode—allows you to turn on or turn off recording.

• Filer Mode—lets you specify selected address to be recorded

Normal ModeNormal ModeNormal ModeNormal Mode

Tracing starts automatically every time emulation starts. Single-stepping turns on the trace re-
cording during user code execution. The trace buffer continues to collect records until recording is
stopped. Tracing is stopped in one of the following ways:

• Automatically by a trigger

• Stopping emulation by clicking Start or Stop Emulator

• Stopping trace by clicking Start or Stop Trace

Any one trigger can optionally generate a hardware breakpoint.

The trace buffer is a ring buffer that collects new records and replaces old records until recording
is stopped. When tracing starts, the buffer is cleared. After recording a single-step, the trace buffer
only contains the records for that one instruction or source line. As long as trace recording contin-
ues, records are added to the buffer. Once the buffer is full, the new records overwrite the oldest
records.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 313131

Figure 24. Trigger Conditions

Window ModeWindow ModeWindow ModeWindow Mode

Tracing starts when the conditions of Trigger 1 are met. Tracing pauses when the conditions of
Trigger 2 are met. Tracing stops when the conditions of Trigger 3 are met. Trigger 3 optionally
generates a hardware breakpoint.

As the program executes, frames are added whenever Trigger 1 is met and until Trigger 2 is met.
This cycle continues until Trigger 3 is met. Tracing stops after the post count trigger frames have
been recorded.

Filter ModeFilter ModeFilter ModeFilter Mode

A filter governs the inclusion of frames in the trace record. Once emulation has started and bus cy-
cles are being recorded, every bus cycle is examined to see if it meets the conditions in the Filter
box of the Trace Setup dialog box. If it does, then the bus cycle is recorded. Bus cycles that are
not the correct type, or that fall outside the address range specified in the Filter box, are not added
to the trace buffer.

Trace Window

To display the contents of the trace buffer in a Trace window, click the TR button on the toolbar,
or from the New menu, click Trace.

The following columns are displayed in the Trace window (Figure 25):

• Frame number

– 0 = Trigger point
– A negative frame number shows the older transactions in reverse order. The top number

indicates the oldest transaction recorded.
– A positive frame number shows how many frames were recorded after the trigger point.

• Hexadecimal address of the bus transaction.

• Hexadecimal data for the bus transaction

• Assembly-language instruction (opcode). Seehau does not disassemble instructions, which
were flushed from the pipeline. Flushed instructions are marked oo1 or oo2 (oo1 means 8-bit
opcode fetch, oo2 means 16-bit opcode fetch).

Chapter 4. Installing and Configuring the Trace BoardChapter 4. Installing and Configuring the Trace BoardChapter 4. Installing and Configuring the Trace BoardChapter 4. Installing and Configuring the Trace Board

32323232 EMUL196–PC User Guide

Figure 25. Trace Window

Trace Menu

The Trace menu (Figure 26) lets you modify the way data is displayed in a Trace window and
performs specific data-analysis operations. (Figure 25 shows a trace display). For details on the
Trace menu items, refer to “Trace Window” in Seehau Help.

The Trace menu is available only when a Trace window is open. To open the Trace menu, click
Trace on the menu bar or right-click in the Trace window.

Figure 26. Trace Menu

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 333333

Figure 27. Trace Configuration/Trace Setup Tab

Trace Configuration

To open the Trace Configuration dialog box (Figure 27), click Trace Config from the Trace menu,
or from the Main menu, point to Config. Then click Trace.

The following describes the five tabs found at the top of the dialog box.

Trace Setup Tab

Trace Type—If there is a trace board this will default to Trace(yes).

Break Emulation?

• Yes, on Trigger—This option provides hardware breakpoint capability. In the Normal Filter
mode, the first trigger meeting the conditions causes the breakpoint. In the Window Filter
mode, Trigger 3 meeting the conditions causes the breakpoint.

• Yes, on Trace Stop—This is a rarely used option that allows stopping both emulation and
trace by clicking Start or Stop Trace (clicking Start or Stop Emulation does the same thing).

Active Triggers

• Triggers 1, 2 and 3—This option is a quick way to enable or disable software and hardware
triggers and the filter. Software Trigger 2 can only be used if Trigger 1 is used, and Trigger 3
can only be used if Trigger 2 is used.

Chapter 4. Installing and Configuring the Trace BoardChapter 4. Installing and Configuring the Trace BoardChapter 4. Installing and Configuring the Trace BoardChapter 4. Installing and Configuring the Trace Board

34343434 EMUL196–PC User Guide

• Filter—Filters your trace captures. Selects the type of information in an address range, and the
type of data that is recorded in the trace memory.

• External Trig—An external event that stops trace buffer recording.

Last Trigger Repeat Count—You can specify a trigger to occur when a condition is met for
the nth time.

Post Trigger Count—Specifies the number of frames to be recorded after the trigger has occurred.

Trigger Mode

• Opcode—You have the option to select the type of cycle the trigger will trigger ON, when
you enter a trigger. With Opcode selected, you will have the following options:

– Include all (options 2 and 3)
– Opcode Fetch
– Data Read/Write
– Exclude all

• Data—You have the option to select the type of cycle the trigger will trigger ON, when you
enter a trigger. With Trigger Mode Data selected, you will have the following options:

Note
The Opcode Fetch is gone and the Data Read/Write have been broken out for a
more specific trigger.

– Include all (options 2 and 3)
– Data Read
– Data Write
– Exclude all

Trigger Output Pulse Mode

• Normal—When a trigger occurs, the TRIGGER_OUT line will have one of the states shown
in Figure 28.

• Pulse Once—

Filter Mode

• Normal—Trigger 1, Trigger 2, and Trigger 3 form a sequence of conditions to stop
trace recording.

• Window—Trigger 1 starts trace recording, Trigger 2 pauses trace recording, Trigger 3 stops
trace recording.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 353535

Figure 28. Pulses

Figure 29. Trace Configuration/Trigger and Filter Tabs

Trigger / Filter ConfigurationTabs

Clicking any of the Trigger or Filter tabs displays a screen that lets you configure the trigger or
filter (Figure 29).

Each configuration screen is divided into two windows:

• Address Cycle Type

• Data Trigger Type

In the Address Cycle Type and Data Trigger Type text boxes, you can enter numerous conditions,
which are logically ORd. These two windows are then logically ANDd together to satisfy the trig-
ger specification for the particular trigger tab. You can also leave either Address Cycle Type or
Data Trigger Type blank.

Chapter 4. Installing and Configuring the Trace BoardChapter 4. Installing and Configuring the Trace BoardChapter 4. Installing and Configuring the Trace BoardChapter 4. Installing and Configuring the Trace Board

36363636 EMUL196–PC User Guide

Entering Addresses and Data

By right clicking in the Trace Configuration window, a dialog box opens with the following
choices:

• Add

• Remove

• Edit

You must have a line selected to exercise the Remove or Edit options. Alternatively, you can press
DEL on the keyboard to remove a line, or double-click the line to edit.

The Add and Edit options display slightly different windows depending on the trigger mode
selected in the Trace Setup tab.

Figure 30. Address Cycle Type/Opcode Trigger Mode

Opcode Trigger Mode

Figure 30 shows an example of the Opcode Trigger mode. There is an option for triggering on the
Opcode Fetch, and the Data R/W are together. The following describes each option:

Cycle Type

• Include All—Triggers on Opcode Fetch or Data R/W.

• Opcode Fetch—Triggers when an opcode is fetched.

• Data R/W—Triggers on any Data R/W.

• Exclude All—This line is inactive.

Begin—Specifies the beginning of the trigger address range.

End—Specifies the end of the trigger address range (inclusive).

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 373737

Figure 31. Address Cycle Type/Data Trigger Mode

Data Trigger Mode

Figure 31 shows an example of the Data Trigger mode. Notice that the option for triggering on the
Opcode Fetch has been removed, and the Data Read and Data Write options are broken out. This
allows for a more specific condition. The following describes each option:

Cycle Type

• Include All—Triggers on Data Read or Data Write.

• Data Read—Triggers when data is read.

• Data Write—Triggers when data is written.

• Exclude All—This line is inactive.

Begin—Specifies the beginning of the trigger address range.

End—Specifies the end of the trigger address range (inclusive).

Data to Trigger On

Figure 32 shows an example of the Data Trigger type. This data will be logically ANDd with the
address. For example, the trace board will trigger when any address between 82E0 and 82F0 has
the pattern 7F read. The Edit Data Qualifier window includes the following:

Figure 32. Data Trigger Type

Chapter 4. Installing and Configuring the Trace BoardChapter 4. Installing and Configuring the Trace BoardChapter 4. Installing and Configuring the Trace BoardChapter 4. Installing and Configuring the Trace Board

38383838 EMUL196–PC User Guide

Trigger Mode

• Range—Triggers on a range of data (numerical progression).

• Pattern—Triggers on a data pattern (1’s and 0’s).

Begin—Specifies the beginning of the trigger data range.

End—Specifies the end of the trigger data range (inclusive).

Other Controls for Trace Configuration

Enabled—Disables a trigger temporarily by clearing this control.

Data Mask—Seehau performs a logical AND between any data specification and the Data Mask to
arrive at an effective data pattern.

Address Mask—Seehau performs a logical AND between any address specification and the Ad-
dress Mask to arrive at an effective address pattern.

Apply—Applies (makes permanent) the screen specifications without closing the dialog box.

OK—Applies (makes permanent) the screen specifications and closes the dialog box.

Cancel—Discards the screen specifications and closes the dialog box.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 393939

 Accessories and Adapters

Types of Adapters

There are many different types of adapters available for the 196 pods. Before you connect the
adapter to the pod, you must verify the adapter’s orientation in reference to the pod to avoid dam-
age to the pod and target board. Adapter orientation in reference to the pod’s Pin 1 can be 0, 90, or
180 degrees.

The POD196 has several adapters that are used in attaching a target board to the pod:

• PLCC

• Pin Grid Array

• Clip-Over

• Surface Mount QFP

• Surface Mount SQFP

Verifying the Orientation of Your Adapter

To verify the orientation of your adapter, start the Seehau196 Adapter Program (included on the
Seehau software CD). You can access this program several ways:

1. Click on the Start menu

2. Move your cursor over Programs until it is highlighted.

3. The available programs will appear to one side.

4. Find the program labeled Seehau 196 and move the cursor over it until it is highlighted.

5. A secondary menu will appear

6. Move your cursor over the option labeled View Adapters and click on it.

7. The program will start.

8. Maximize the box that appears and then click on the down arrow next to the list of adapters.

9. A list of all the adapters will appear.

10. Click on the adapter that you are interested and a picture will appear.

Chapter 5. Accessories and AdaptersChapter 5. Accessories and AdaptersChapter 5. Accessories and AdaptersChapter 5. Accessories and Adapters

40404040 EMUL196–PC User Guide

Creating a Shortcut to PicView

If you would like, you can also put an icon on your desktop rather than follow the previous proce-
dure. To create this icon, follow this procedure if you did not move the icon to your desktop when
the Seehau software was first installed.

1. Start Windows Explorer.

2. Find the Nohau directory and then the Seehau196 subdirectory (C:/Nohau/Seehau196).

3. Click on the Seehau196 subdirectory to highlight the files and subdirectories.

4. Find the file called PicView.exe and right-click on it.

5. A secondary menu will appear to the side.

6. Move your cursor over the option Create Shortcut and click on it.

7. At the end of the list of files in the directory, a new file called Shortcut to PicView.exe will
appear.

8. Drag the file onto your desktop.

9. Rename Shortcut to PicView.exe to an appropriate name (right click on the file and Rename
the file).

10. When the program starts follow the procedures from items number 8, 9, and 10 from the
previous list.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 414141

 Installing and Configuring the
Pod Board

Overview

Every pod is a fully functional, stand-alone 8xC196 board, with a processor, RAM, a crystal,
PROM, and logic.

When you click Reset, the emulator pulls the /RST line low, resetting the controller. When the
/RST line is released the controller begins executing instructions that allow the emulator board to
communicate with the pod. The controller will continue to execute monitor code until you click
Step, Go, or from the Run menu, click Reset, then Go.

When you click Break, a specific kind of nonmaskable interrupt occurs, the return address is
pushed on the stack, the program counter is loaded with the monitor vector, and it continues to run
at the new address.

When sections of memory are displayed on your screen, the controller actually reads the memory
locations and sends the values back to the emulator board in your PC.

Note
If you are running user code, target power can be turned OFF/ON to emulate power
on if /RESET is held low during power off.

Features Common to All Pod Boards

Stack Pointer

Because the emulator pushes the return address on the stack, the Stack Pointer must point to valid
memory. There must be room on the stack for two bytes (or four bytes for users of chips with
larger addressable ranges) to hold the address.

CAUTION

In addition, there is a lower limit to the stack pointer. The stack pointer must have a value greater
than 0x50, or else your register contents cannot be saved correctly.

Chapter 6. Installing and Configuring the Pod BoardsChapter 6. Installing and Configuring the Pod BoardsChapter 6. Installing and Configuring the Pod BoardsChapter 6. Installing and Configuring the Pod Boards

42424242 EMUL196–PC User Guide

Indicator Lights

The pod boards contain four lights: Halt, Reset, Run, and User.

Halt Light—indicates when the target asserts the HLD signal. This light is connected directly to
the port pin, which drives this signal. The port pin can also be configured as an I/O pin. If config-
ured as HLDA#, then this light indicates when the target asserts the HLD signal. If configured as
an I/O pin, then the light will toggle according to the signal.

Note
If using the HLD pin as low speed I/O, disregard the light.

Reset Light—indicates when the emulator resets the controller.

Run Light—indicates when the controller is executing user code (as opposed to monitor).

User Light—indicates the state of any signal on the pod or target by connecting a wire from the
desired signal to the test point labeled TP1. The user light indicates when the test point is brought
low.

How to Simultaneously Stop Code Execution on
Two Emulators

At the edge of the pod board there are two test points called BRK_IN and BRK_OUT. The
BRK_OUT test point will show logic low when the user code stops. The BRK_IN test point, if
forced to logic low, will make the user code stop. With two emulator systems, you can connect
BRK_OUT from one pod to BRK_IN on the other pod to make the two-emulator systems stop
user code execution simultaneously.

Trace Input Pins

Next to the indicator lights and the test point is an array of eight pins labeled Trace. These pins can
be connected to any logic signal and will record the state of that signal with every trace record.
(Pins 0 through 3 are sampled with the address, on the falling edge of ALE.) Pins 4 through 7 are
sampled with the data, on the rising edge of the RD/WR strobes. For more information about dis-
playing these bits and TRIGGER_IN/TRIGGER_OUT, refer to Chapter 4, “Installing and Config-
uring the Trace Board” in this guide.

Resource Selection

If the same resource appears on both the target board and the pod board, there can be interference
that will prevent correct emulation. The only way to avoid this conflict is to remove or disable ei-
ther the target or the pod resource for all the resources that appear on both.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 434343

When the pod is connected to a target that has no power supply the pod can supply +5V to the tar-
get limited by your PC supply capacity and the target’s sensitivity to under voltage. If the target
has its own power supply, remove the jumper on the PWR header. If you do not remove the
jumper, it is possible to damage the target power supply, the PC power supply or both.

If your target has a crystal operating at a different frequency from the crystal on your pod, you
might want to use the target crystal instead of the pod crystal. To use the target crystal, find the
two headers labeled TARGET/POD near the pod crystal and place the two jumpers so that they are
on the TARGET side. This will disconnect the pod crystal from the controller on the pod and al-
low the pod controller to use the crystal on the target.

Power

When the pod is connected to a target that has no power supply, the pod can supply +5 volts to the
target limited by your PC supply capacity and target's sensitivity to under-voltage. See individual
pods for maximum current.

 WARNING

If the target has its own power supply, remove the jumper on the PWR header. If you do not, it is
possible to damage either the target power supply or the power supply in your PC.

XTAL

If your target has a crystal operating at a speed different from the frequency on your pod, you
might want to use the target crystal instead of the pod crystal. To use the target crystal, find the
two headers labeled TARGET/POD near the pod crystal and place the two jumpers on the target
side. This disconnects the pod crystal from the controller on the pod and allows the pod controller
to use the crystal on the target.

Microcontroller

EMUL196–PC uses a special emulation controller to emulate the 80C196. This special chip has
extra pins that give the emulator extra features. The emulation controller can map memory, halt
execution, and set breakpoints. This is why your program must execute in the controller on the pod
and not in the controller on your target board.

Chapter 6. Installing and Configuring the Pod BoardsChapter 6. Installing and Configuring the Pod BoardsChapter 6. Installing and Configuring the Pod BoardsChapter 6. Installing and Configuring the Pod Boards

44444444 EMUL196–PC User Guide

Clip-Over Adapter

 WARNING

Due to the possibility that the system can become unreliable when applying an adapter, Nohau
does not recommend their use. In certain cases, it will be necessary for some customers to use
these adapters due to space restrictions. As such, Nohau will sell the necessary adapters for those
customers who really need them.

Most adapters fit between the pod and the target board, replacing the target controller. When using
the clip-over adapter, you must leave the controller on the target so you can clip to it. The pod will
automatically disable the controller in the target (if you have the Once jumper in place). For more
information about how to use the clip-over adapter, refer to the “View Adapter” software provided
with the Seehau CD and see Chapter 5, “Accessories and Adapters” in this guide.

Summary of Hardware Configuration

• RAM—can be mapped to the target.

• Target Crystal—can be selected by moving JP7 and JP10 to the target side of the header.

• Target Serial Port—can be selected by removing the RXD jumper (J1).

• Target Power Supply—can be selected by removing the jumper from the PWR header
on the pod.

 WARNING

The black wire with the micro-clip is a ground wire, which is helpful for ensuring that the pod and
target grounds are at the same potential. It is recommend you attach this clip to a grounded point
on your target before attaching the pod to the target.

Memory Map Configuration Requirements

The emulator software allows you to map any address to either the pod or the target. However, If
you map all RAM to the target, there are three special addresses that the emulator needs: 18H,
2010H, and 2012H. The simplest suggestion is to leave those three addresses mapped to the pod. If
you must map addresses 2010H and 2012H to the target, those addresses on your target must con-
tain the value 0019H to support software breakpoints.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 454545

The Intel manuals state that address 18H is reserved for the stack pointer. However, when fetching
instructions, a fetch from that address will get the instruction from an external memory device. On
the pod, that address contains the value zero. If you map address 18H to the target, your target
ROM/RAM must also contain a zero.

The emulator requires enough memory to push a return address onto the stack. If the stack pointer
points to an address with no physical memory, the emulator will be unable to reach its monitor
code. Subsequently, communications with the emulator will fail.

Enough Emulator Memory?

A POD196–256-xx has only 256K of breakpoint and mapping memory in parallel with 256K of
emulation memory. That means that you only have four pages to use if you mapped memory. If
you have pages that overlap because of this, you should order a 1-MB pod. If you have access to
physical memory at address 5000H, it will also show on three other pages: 45000H, 85000H and
C5000H. The emulator reads them from page zero.

Internal Addressing or Single-Chip Mode

Note
This section pertains only to pods that emulate controllers that support single-chip
operation, unlike POD196–NP.

Target designs that use only internal RAM and ROM can use the address and data bus pins for low
speed I/O. This is called either single-chip mode or internal addressing mode. Pulling the EA pin
high during reset will configure the 8xC196 for internal addressing. This will free the address and
data bus pins for general purpose I/O.

When in single-chip mode, the pod still uses emulation RAM as a substitute for internal RAM and
ROM in the target controller. This requires the same pins being used for I/O on the target. In fact,
unlike a normal 8xC196, the address, data, and bus control pins on the special emulation controller
cannot be used for low speed I/O. The solution to this need is a Port Replacement Unit (PRU) that
reconstructs the low speed I/O ports for the target. (If you are using the address or data bus as low-
speed I/O, you will need a PRU.)

Replacing Ports: POD196–KR/NT and CA/CB

Because the EMUL196–PC uses a special emulation controller, it can emulate single-chip appli-
cations. Ports 3, 4 and 5 can be used for general purpose I/O. On most 80C196 controllers, Ports 3
and 4 can be replaced with some external logic, but Port 5 cannot. The special emulation control-
ler has extra features that allow port 5 to be replaced by logic also. This is the function of the
optional PRU for POD196–KR/NT.

Chapter 6. Installing and Configuring the Pod BoardsChapter 6. Installing and Configuring the Pod BoardsChapter 6. Installing and Configuring the Pod BoardsChapter 6. Installing and Configuring the Pod Boards

46464646 EMUL196–PC User Guide

If you want to emulate single-chip applications or other applications that assign Port 5 pins to
carry general purpose I/O, you must purchase the PRU. This board attaches to the array of pins
surrounding the pod controller and completely replaces Ports 3, 4, and 5. This allows the emula-
tion RAM on the pod to emulate the internal RAM and ROM in the target CPU.

Port Replacement Unit (PRU)

A PRU is a hardware device that uses logic to allow the pod controller to have the bus control sig-
nals it needs while also allowing the applications to behave as though it has exclusive use of the
shared pins. It fits between the pod and the Nohau adapters. Once installed, it mimics the I/O port
control registers and uses those registers to configure the replacement ports just as a normal con-
troller would configure the normal ports. This way, the PRU can replace ports and often not re-
quire any target hardware or software changes. The PRU supports Ports 3, 4 and 5 (and Port 12 in
some cases). Not all supported controllers have PRUs available. See the “Port Replacement Units”
section at the end of Chapter 7, “Installing and Configuring the Pod Boards.”

Program Performance Analyzer (PPA)

What portion of your application uses most of the CPU cycles? This is the question that PPA is de-
signed to answer. You set up address ranges or bins, run your program, and then look at the result
to see where (or which bin) the statistics say your program spent the most time. For more informa-
tion about PPA, select Help in your Seehau software.

Code Coverage

Code coverage shows unexecuted code in a program. Unexecuted/untested code can contain bugs,
which lead to unexpected results. This is why it is important to make sure all the code is executed
and tested. If the program resides in programmable memory, it is also important to make sure that
memory is not wasted by unexecuted code. For more information about code coverage, select Help
in your Seehau software.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 474747

 Pod Boards

POD196–KC / KD

Figure 33. POD196–KC / KD (Rev. B)

Overview

Note
This section refers to the Rev. B board only although this section also applies to the
Rev. A board. The two boards are functionally identical.

This pod board contains an Intel 8xC196 bondout microcontroller chip (suitable for emulating the
Intel 8xC196KB, 8xC196KC, 8xC196KD or the 8xC198). This is a 16-or 20-MHz crystal, with
64K of emulation RAM for instructions and data, circuits for driving the cable bus, two flash
memories, and three large FPGA chips.

Dimensions

The pod board itself is six inches by four inches (15.3 cm. by 10.3 cm). The pod requires between
one and two inches (2.5 cm to 5 cm) of space above the target, depending upon which adapter is
being used to connect the pod to the target.

Chapter 7. Pod BoardsChapter 7. Pod BoardsChapter 7. Pod BoardsChapter 7. Pod Boards

48484848 EMUL196–PC User Guide

POD196–KC / KD

0.3 in. 0.2 in.

0.2 in.
0.3 in.

1.90 in.
48.3 mm

2.
10

 in
.

53
.3

 m
m

Figure 34. POD196–KC / KD Footprint Dimensions

Emulation Memory

Controllers with 16 address bits can only directly address 64K of memory. Some target designs
use one 64K bank for instructions and one for data using the INST signal. See the “INST” section
for more details on using the INST pin.

Note
When using the pod in 8-bit mode and performing a 16-bit data access, the trace
will show the two writes in one frame. However, on the target side of the pod, two
writes will occur. This is how the bondout chip functions.

Wait States

When the emulator is not running user code, and the RUN light is not lit, the pod CPU runs with
eight wait states. This is more than adequate for emulation RAM, but it might not be enough wait
states for your target memory devices. If a range of addresses is mapped to target memory devices
that require more than eight wait states, the numbers in that address range displayed in the Data
window cannot be correctly displayed or edited. This in now way affects how the user code runs.

Headers and Jumpers

Pods are usually delivered with jumpers in their factory default position. Most headers apply to all
the processors supported by this pod. When shipped from the factory, all jumpers are in place for
stand-alone operation. When you connect any pod to a target, examine all jumpers and make sure
that they are all correctly placed.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 494949

POD196–KC / KD

ClockClockClockClock

These two headers each have two jumper positions: TARGET and POD. When set in the
TARGET position, the pod controller receives the clock signal from the target crystal. With
both in the POD position, the controller uses the crystal on the pod.

In ONCE mode, (only while using a clip-over adapter), all the target controller pins are tri-stated
except the oscillator pins. Because there is no way to disconnect the target crystal from the target
controller, the target crystal remains an active part of the clock circuit even when the jumpers are
moved to the POD position. Where the two oscillators are running at the same frequency, they
synchronize naturally. The presence of two oscillators does not affect how the application runs. If
they are different frequencies, you probably want to put both jumpers in the TARGET position and
use just the target oscillator.

Note
When these jumpers are in the POD position, the XTAL signals on the pod are
disconnected from the target.

PWRPWRPWRPWR

Remove this jumper when the target has its own power supply. When this jumper is in place, the
target can get Vcc from the pod as long as the current requirement is less than 0.5 amps. Higher
currents cause a significant voltage drop along the current path and the pod can be damaged.

Note
The pod is specified to run at a nominal 5V +/- 5%, or from 4.75V to 5.25V. At
voltages less than 4.70V, and at frequencies greater than 16 MHz, interrupts
that occur near the falling edge of CLOCKOUT might not be recognized. If you
have removed the PWR jumper and are using an external power supply, be sure
the supply provides power within 5 percent of 5V.

RXD/TXD/GNDRXD/TXD/GNDRXD/TXD/GNDRXD/TXD/GND

On all of the 196 pods except POD196–EA, there are three pins labeled RXD/TXD/GND. This
allows receive (RXD), transmit (TXD), and ground (GND) signals for the 196 processor.

If your target outputs debugging information on the serial port, you might want to connect an
RS232 device like a terminal or a PC. The terminal is connected via clips or wires from these pins
to the terminal (input, output, and ground).

Chapter 7. Pod BoardsChapter 7. Pod BoardsChapter 7. Pod BoardsChapter 7. Pod Boards

50505050 EMUL196–PC User Guide

POD196–KC / KD

This pod includes a MAX232 chip to convert the signal levels from RS232 to TTL levels. Whether
or not you connect the RXD on J1 to an RS232 device, the MAX232 chip will drive
the serial port input pin on the controller. However, if P2.1 is used for low speed I/O, then JP13
should be removed. To allow the MAX232 chip to drive the serial port input pin, place a jumper
on this header.

The TXD pin gives the user the option of transmitting signals (output) to a terminal and a target
simultaneously. The RXD signal on the other hand can only receive a signal (input) from one
source at a time. The following diagram shows how this functions.

Figure 35. Data Flow To and From the Target and the MAX232 Chip

The processor cannot handle input from two different sources at the same time. If you are con-
nected to a terminal, through the MAX232 chip you must be in stand-alone mode (not connected
to a target). If you are connected to a target the RXD jumper on JP13 must be removed, so you are
not connected to a terminal and a target at the same time.

RSTRSTRSTRST

Occasionally, a target might contain an external device designed to reset the controller by pulling
the /RST pin low (i.e., a watchdog timer). The signal from the target /RST pin passes through
the RST header. Removing the RST jumper prevents the external device from resetting the pod
controller.

HOLD: P1.7HOLD: P1.7HOLD: P1.7HOLD: P1.7

This jumper is factory installed in the P1.7 position, which is appropriate when this pin is used for
low speed I/O. If you plan to use this pin for carrying the HOLD signal, move this jumper to the
HOLD position. With the jumper in the HOLD position, logic on the pod will prevent the HOLD
signal from reaching the controller while the emulator has control. When running the application,
the HOLD signal will be passed through normally.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 515151

POD196–KC / KD

BUSWIDTH: JP5BUSWIDTH: JP5BUSWIDTH: JP5BUSWIDTH: JP5

From the factory, this header comes with a jumper installed in the BW position and, should never
need to be removed. If your target uses only 16-bit wide bus, you can put an additional jumper in
the Vcc position. If your target only uses an 8-bit bus, you can put an additional jumper in the
GND position. In a similar manner, the BW pin can be pulled high by placing two jumpers on the
BUSWIDTH header: one on the BW pins and one of the Vcc pins. For more information about the
BW pin on the 8xC196, refer to the Intel user manual for your controller type.

Note
The pair of pins with the PORT label is reserved for a feature not yet implemented.
Do not place a jumper on this pair of pins.

 WARNING

Whether you pull the BW pin high or low, make sure that the jumper settings agree with your
target hardware design. If they are different, you can damage the pod, the target, or both. It is
recommended that you leave the Vcc and GND jumpers off when you are plugged into the target.
This will allow the target to control the BW pin.

EA16-EA19EA16-EA19EA16-EA19EA16-EA19

The jumpers on these headers must remain in their default or grounded positions for all control-
lers. If you use bank switching to address more than 64K, contact Nohau Technical Support
(support@nohau.com).

INSTINSTINSTINST

This section is intended for customers using the POD196–64 KC/KD who require more than 64K
address space. The pod was designed to handle this by using INST pin to access either code or
data by having 2x64K of emulation RAM and special jumpers which, can be used to access an ad-
ditional 128K of memory. The emulator writes the data in the first 64K pages of memory and the
code in the second 64K pages in memory. New features have been added which allows support for
a common bank and separate mapping of CODE and DATA. The trace currently cannot distin-
guish between code and data symbols.

Chapter 7. Pod BoardsChapter 7. Pod BoardsChapter 7. Pod BoardsChapter 7. Pod Boards

52525252 EMUL196–PC User Guide

POD196–KC / KD

JP30: INST/M_INST (Two-Position)JP30: INST/M_INST (Two-Position)JP30: INST/M_INST (Two-Position)JP30: INST/M_INST (Two-Position)

This jumper passes the INST signal from the bondout chip to the target or passes the M_INST
(gated INST) signal to the target. Leave this jumper in the default position. Normally you would to
load your code into the emulator RAM and execute from this RAM instead of the target ROM.
You will only need to move the JP30 jumper to the M_INST position when you have the pod
hooked to a target (mapped to target). You can view this code ROM in the Program window.

If you move the JP30 jumper to the M_INST location, note that the hardware on the pod will gate
the INST pin with a delay of 10 ns. This will cause it to be held high when you access the common
code/data bank.

JP6: M_INST – EA16-GND (Three-Position)JP6: M_INST – EA16-GND (Three-Position)JP6: M_INST – EA16-GND (Three-Position)JP6: M_INST – EA16-GND (Three-Position)

This jumper controls what the emulation RAM and the trace board sees on signal A16. Place this
jumper in the GND position for normal <64K mode. Place this jumper in the M_INST position for
>64K mode.

 WARNING

Never place this jumper in the EA16 position with a KC pod (EA16 is a non-connect pin intended for
bank switching, which is not supported).

The M_INST signal is generated by the logic on the pod and is either:

• Always high when accessing the code area or common code/data bank,

OR

• Is equal to the CPU INST signal.

This signal allows the emulator to view code in the Source window or data in the Data window.

All hardware breakpoints will effect code space only.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 535353

POD196–KC / KD

Procedure to Test

1. Place jumpers JP6 in the M_INST location

2. Start the emulator

3. Click Reset

4. Make sure PC = 2080H and SP = 200H

5. Click in the Source window

6. Type in this program at 2080H:
NOP
INC 1C
ST 1C, 2080
LJMP 2080

7. Click Go

8. Click Break

9. View the Source window and Data window to verify that you can look at data at 2080H and
code at 2080H.

10. All hardware breakpoints will be placed in the code bank.

Some users only want to have the INST pin supported from 8000 – FFFF. The emulator uses the
INST pin to make 2x64K bank available. You can get around this by putting code tables for data
access below 8000 in both the code bank and in the data bank in the on pod emulation RAM.

Memory Mapping

The memory map menu in the windows software will let you map code and data individually
to your target when you use the INST pin. For mapping data, use the address range as usual
(0000 – FFFF). For mapping code, use the address range ORd with 10000H (12080H – 13000H
will map code between address 2080H – 3000H to target).

Chapter 7. Pod BoardsChapter 7. Pod BoardsChapter 7. Pod BoardsChapter 7. Pod Boards

54545454 EMUL196–PC User Guide

POD196–KC / KD

Hardware Breakpoint Setup

The hardware breakpoint setup window allows you to set a hardware breakpoint when running out
of a target ROM. To do so, use the address range ORd with 10000H (to set a hardware breakpoint
at address 2090H in your code ROM, enter address 12090H in the setup menu).

Note
The JP30 jumper is also available for the KR/NT pod, but is implemented as a
surface mounted resistor jumper named RJP6. This jumper must be moved to
location 2–3 to get the gated INST line connected to the target. The software does
not support separate code and data mapping or the INST mask for the KR/NT pod.

Helpful Hints for Compiling

Use the following linker invocation where you have overlapping ROMs decoded by the INST pin,
one for CONST segment and one for CODE segment:

rl196 cstart.obj, hello.obj, c96.lib to hello.omf &
md(kc) romdata(02000h-03fffh) &
romcode (02000h-03fffh) &
inst

This will normally generate code for two separate ROMs, both at address 2000h-03fffh with the
INST pin on the target selecting either one. (In the omf file one is a CONST segment and the other
a CODE segment, both at the same address.) Load the code into the emulator twice, switching the
INST jumpers each time to load into both code and data spaces. Start with the jumper in the INST
position and end with the jumper in the M_INST position. This will fail because each time, as the
CODE segment is loaded into both the code and data spaces. The CONST segment from the .omf
file will never be loaded into data space no matter what you do.

The only work around is to use the OH196 object hex utility to generate a hex file, which extracts
only CONST segments to put into the data space. Using the above example, the invocation would
be as follows:
oh196 –o romdata.hex –s const hello.omf

Then, romdata.hex is loaded into the data space by selecting INST jumper settings and hello.omf
is loaded into the code space by selecting M_INST jumper settings. This has now loaded the cor-
rect code/data into both code and data spaces. A limitation (apart from having to remember to load
two separate files using two different sets of jumper settings each time) is that you will not have
access to symbolic debugging of any CONST segments that overlap CODE segments.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 555555

POD196–KC / KD

Download Procedure

Following is the procedure to download a common code/data bank residing between 0 – 7FFF and
the rest of the code.

1. Move JP6 to GND and JP30 to INST position to load code constants to your data bank.

2. Download your code table (0 – 7FFF).

3. Move JP6 and JP30 to M_INST position to load code to your code bank

4. Download your code table (0 – 7FFF) again.

5. Download your code from 8000 – FFFF.

Chapter 7. Pod BoardsChapter 7. Pod BoardsChapter 7. Pod BoardsChapter 7. Pod Boards

56565656 EMUL196–PC User Guide

POD196–KR / NT

NOHAU CORP. POD196-KR/NT

TP1

TA
R

G
ET

\P
O

D

JP
10

XJP3

PW
R

TRACE JP1 S/N

J1

EA19
EA17
AD15
AD13
AD11
AD9
GND
AD7
AD5
AD3

EA18
EA16
AD14
AD12
AD10

AD8
TVCC

AD6
AD4

AD
2

AD
0

N
M

I

TV
C

C
R

XD
I
N
T
B

H
L
D

C
LK

AC
H

1

AD
I

R
S
T

E
A

G
N

D
TX

D
EI

N
T

I
N
T
0

H
L
D
A

AC
H

0
AC

H
2

JP7

B
H
E

AD
20

AD
22

VP
P

AL
E

R
D

Y
G

N
D

X2 SC
I

SC
O

W
R R
D

AD
21

AD
23

G
N

D
IN

ST
P5

.4 X1 SD
I

SD
O

GND

JP
8A

JP
13

JP
14

JP
15

JP
16

JP
18

JP
19

JP
20

JP
22

M
_I

N
S

EA
16

G
N

D

PO
R

T
BW G
N

D
VC

C

EA
17

\G
N

D

EA
18

\G
N

D

EA
19

\G
N

D

RST H
LD

EXD0
EPA9
EPA0
EPA2
EPA4
EPA6
VREF
AGND
ACH6
ACH4

EXCO
EPA8
EPA1
EPA3
EPA5
EPA7

ACH7
ACH5
ACH3

TA
R

G
ET

\P
O

D

Rev B

HALT RESET RUN USER 70

GND/TXD/RXD

JP5JP6\TRA16 JP
12

\T
R

A1
7

JP
17

\T
R

A1
8

JP
21

\T
R

A1
9

BUSWIDTH

R
XD

BRK_OUT BRK_IN

Figure 36. POD196–KR / NT (Rev. B)

Overview

This pod board contains an Intel 80C196 bondout microcontroller chip (suitable for emulating the
Intel 8xC196JR, 8xC196KR or the 8xC196NT). This is a 16-or 20-MHz crystal, with either 256K
or 1 MB of emulation RAM for instructions and data, circuits for driving the cable bus, two flash
PROMs, and two large FPGA chips.

Dimensions

The pod board itself is six inches by four inches (15.3 cm. by 10.3 cm). The pod requires between
one and two inches (2.5 cm to 5 cm) of space above the target, depending upon which adapter is
being used to connect the pod to the target.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 575757

POD196–KR / NT

0.1 in. 0.1 in.

0.1 in.
0.1 in.

 1
.8

0
in

.
45

.7
 m

m

 1.80 in.
45.7 mm

 3
.8

1
in

.
96

 m
m

 4.63 in.
118 mm

Figure 37. POD196–KR / NT Footprint Dimensions

NMI Pin (KR/NT only)

When using the POD196–KR/NT without a target connected, you should connect the NMI pin to
ground to prevent spurious nonmaskable interrupts. The simplest way to do this is to connect the
ground micro-clip from the pod to the pin marked NMI on the pod. If your target does not use the
NMI pin, you should still ground the NMI pin on the pod (the pod leaves the NMI pin floating).

PRU

A PRU is a hardware device that uses logic to allow the pod controller to have the bus control sig-
nals it needs while also allowing the applications to behave as though it has exclusive use of the
shared pins. It fits between the pod and the Nohau adapters. If any of the pins in P3, 4 or 5 are used
as low speed I/O, you must use a PRU.

Emulation Memory

Controllers with 16 address bits can only directly address 64K of memory. Controllers like the
8xC196NT, with 20 address bits, can address 1 MB. Call Nohau Technical Support or your local
Nohau representative for information about ordering a 1-MB pod.

Headers and Jumpers

Pods are usually delivered with jumpers in their factory default position. Most headers apply to all
the processors supported by this pod. Some headers only apply to controllers with 20 address bits.
When shipped from the factory, all jumpers are in place for stand-alone operation and 16 bits of
addressing. When you connect any pod to a target, examine all jumpers and make sure that they
are all correctly placed.

Chapter 7. Pod BoardsChapter 7. Pod BoardsChapter 7. Pod BoardsChapter 7. Pod Boards

58585858 EMUL196–PC User Guide

POD196–KR / NT

ClockClockClockClock

These two headers each have two jumper positions: TARGET and POD. When set in the
TARGET position, the pod controller receives the clock signal from the target crystal. With
both in the POD position, the controller uses the crystal on the pod.

Note
When the clock jumpers are in the pod position, the XTAL signals from the pod are
disconnected from the target.

In ONCE mode, (only while using a clip-over adapter), all the target controller pins are tri-stated
except the oscillator pins. Because there is no way to disconnect the target crystal from the target
controller, the target crystal remains an active part of the clock circuit even when the jumpers are
moved to the POD position. Where the two oscillators are running at the same frequency, they
synchronize naturally. The presence of two oscillators does not affect how the application runs. If
they are different frequencies, you probably want to put both jumpers in the TARGET position and
use just the target oscillator.

PWRPWRPWRPWR

Remove this jumper when the target has its own power supply. When this jumper is in place, the
target can get Vcc from the pod as long as the current requirement is less than 0.5 amps. Higher
currents cause a significant voltage drop along the current path and the pod can be damaged.

Note
The pod is specified to run at a nominal 5V +/- 5%, or from 4.75V to 5.25V. At volt-
ages less than 4.70V, and at frequencies greater than 16 MHz, interrupts that occur
near the falling edge of CLOCKOUT might not be recognized. If you have removed
the PWR jumper and are using an external power supply, be sure the supply pro-
vides power within 5 percent of 5V.

RXD/TXD/GNDRXD/TXD/GNDRXD/TXD/GNDRXD/TXD/GND

On all of the 196 pods except POD196–EA, there are three pins labeled RXD/TXD/GND. This
allows receive (RXD), transmit (TXD), and ground (GND) signals for the 196 processor. If your
target outputs debugging information on the serial port, you might want to connect an RS232 de-
vice like a terminal or a PC. The terminal is connected via clips or wires from these pins to the
terminal (input, output, and ground).

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 595959

POD196–KR / NT

This pod includes a MAX232 chip to convert the signal levels from RS232 to TTL levels. Whether
or not you connect the RXD on J1 to an RS232 device, the MAX232 chip will drive the serial port
input pin on the controller. However, if P2.1 is used for low speed I/O, then JP13 should be re-
moved. To allow the MAX232 chip to drive the serial port input pin, place a jumper on this
header.

The TXD pin gives the user the option of transmitting signals (output) to a terminal and a target
simultaneously. The RXD signal on the other hand can only receive a signal (input) from one
source at a time. The following diagram shows how this functions.

Figure 38. Data Flow to the Target and the MAX232 Chip

 WARNING

The processor cannot handle input from two different sources at the same time. If you are con-
nected to a terminal, through the MAX232 chip you must be in stand-alone mode (not connected to
a target). If you are connected to a target the RXD jumper on JP13 must be removed, so you are
not connected to a terminal and a target at the same time.

RSTRSTRSTRST

Occasionally, a target might contain an external device designed to reset the controller by pulling
the /RST pin low (i.e., a watchdog timer). The signal from the target /RST pin passes through
the RST header. Removing the RST jumper prevents the external device from resetting the pod
controller.

Chapter 7. Pod BoardsChapter 7. Pod BoardsChapter 7. Pod BoardsChapter 7. Pod Boards

60606060 EMUL196–PC User Guide

POD196–KR / NT

HLDHLDHLDHLD

The target HLD signal passes through the HLD header. Removing this jumper will prevent the pod
controller from receiving the Hold Request from a target device.

BUSWIDTHBUSWIDTHBUSWIDTHBUSWIDTH

This header controls the signal sent to the FLEX logic chips. The bondout chip does not correctly
assert the bus control signals when the CCBs are set to have an 8-bit wide bus. If you need to
emulate an 8-bit bus, you can do so reliably by setting the CCBs to have a dynamic buswidth and
adding a jumper to this header in the GND position. Have two jumpers on this header, one in the
BW position and one in the GND position.

Note
The pair of pins on the BUSWIDTH header with the PORT label is reserved for a
feature not yet implemented. Do not place the jumper on this pair of pins.

 WARNING

Whether you pull the BW pin high or low, make sure that the jumper settings agree with your target
hardware design. If they are different, you can damage the pod, the target, or both. Do not insert a
jumper on both the Vcc and GND when you are plugged into the target. This will allow the target to
control the BW pin.

EA16-EA19EA16-EA19EA16-EA19EA16-EA19

The jumpers on these headers must remain in their default or grounded positions for all controllers
that use 16 address bits. Controllers like the 8xC196NT have 20 address bits and will likely need
to change these jumpers.

Each of these jumpers sits between the controller and the address signals going to the emulator and
trace boards. These address signals are used to correctly locate write cycles in Shadow RAM and
trace records of all kinds in the trace buffer.

If your application uses a controller with 20 address bits, for every address bit above 15 that the
application uses for addressing, move the corresponding jumper from the GND position to the
EA1x position. This will pass that address signal on to the emulator and trace boards. For each of
the bits that are used for I/O instead of addressing, put the jumper on the GND side. This applies to
JP/TRA16 although it has a different geometry than the other headers.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 616161

POD196–KR / NT

 WARNING

Do not put more than one jumper on EA16, also labeled JP6. Having two jumpers on this header
can damage the bondout controller or some other part of the pod.

KR/NT Ready Functionality

The KR/NT pod uses a bondout version of the 196NT. When designing this chip, Intel remapped
the P5 SFRs to external memory. This makes them inaccessible and P5.6 cannot be configured as
the READY input signal.

Programming the CCBs for infinite Wait States automatically enables P5.6 to function as the
READY input and it will control the duration of the Wait State. However, when the CCBs are
programmed for any other number of Wait States, the internal ready circuitry always reads a zero
and Wait States are inserted as specified by the CCBs. Because P5.6 cannot be configured as the
READY input, holding P5.6 high will not cancel the Wait States.

SolutionSolutionSolutionSolution

To regain READY functionality, a wire jumper should be placed on the pod from the READY pin
to TP16 (BRK_IN) at the edge of the pod. The rest is taken care of by the new bin files (*.bin) on
the CD-ROM disk accompanying the pod board.

Note
This solution takes over the use of BRK_IN (TP16). If the BRK_IN function is
needed, this solution cannot be used.

Chapter 7. Pod BoardsChapter 7. Pod BoardsChapter 7. Pod BoardsChapter 7. Pod Boards

62626262 EMUL196–PC User Guide

POD196–KR / NT

S/N

JP7

B
H
E

AD
20

AD
22

VP
P

AL
E

R
D

Y
G

N
D

X2 SC
I

SC
O

W
R R
D

AD
21

AD
23

G
N

D
IN

ST
P5

.4 X1 SD
I

SD
O

JP
8A

H
LD

Rev BBRK_IN

Figure 39. Ready Functionality Jumper Solution

Under the C:\Nohau\Seehau196\logic\ subdirectory, you will need to replace the following files:

• Pod_kr.bin

• Pod_nt.bin

• Pod_nt1.bin

• Pod_nt2.bin

• Pod_nt3.bin

• Pod_nt4.bin

Under the C:\Nohau\Seehau196\logic\kr_ntrdy subdirectory, you will find six identically named
files. Copy these files into the logic subdirectory after backing up the original files. See the
following warning.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 636363

POD196–KR / NT

 WARNING

The six original files should be copied to another subdirectory (you will need to create a separate
subdirectory first) and then replaced with the ones under the kr_ntrdy subdirectory. If the BRK_IN
function is needed later, the original files can be restored.

Note
This modification will use P5.6 as READY regardless of how Port 5 is configured. If
P5.6 is intended to be used as READY, the user must remember to configure the
port properly or the user code might work on the emulator, but fail in the final de-
sign.

The software will restore the READY pin functionality for true emulation of 196KR/NT control-
lers. The user should connect a jumper from TP16 to GND if P5.6 is to be used for I/O or from
TP16 to the READY pin if P5.6 is to be used as the READY input. When the jumper is connected
to the READY pin, P5.6 will always control wait states regardless of how Port 5 is configured.

Chapter 7. Pod BoardsChapter 7. Pod BoardsChapter 7. Pod BoardsChapter 7. Pod Boards

64646464 EMUL196–PC User Guide

POD196–NP / NU

NOHAU CORP. POD196-NP/NU

TP1

TA
R

G
ET

\P
O

D

JP10

TRACE

JP1 S/N

J1

JP7

JP
13

Inst

GND\EA18

GND\EA19

RST

TA
R

G
ET

\P
O

D

Rev C

HALT RESET RUN USER
70

GND/TXD/RXD

TR
A1

8

JP
21

BRK_OUTBRK_IN

EA16

GND
XJ

P3

P
W

R

RD#
ALE
RDY
ONCE
VCC
A8
A10
A12
A14
N.C.
X1
GND
P2.7

P2
.6

P2
.4

P2
.2

P2
.0

VC
C

P4
.2

P4
.0

G
N

D
VC

C
P1

.4
P1

.2
VC

C
P3

.7

P2
.5

P2
.3

P2
.1

G
N

D
P4

.3
P4

.1
P1

.7
P1

.6
P1

.5
P1

.3
P1

.1
P1

.0

EP
.3

G
N

D
EP

.1
AD

15
AD

13
AD

11
AD

9
AD

8
AD

7
AD

5
AD

3
AD

1

W
R

L#
EP

.2
VC

C
EP

.0
AD

14
AD

12
AD

10
G

N
D

VC
C

AD
6

AD
4

AD
2

AD
0 GND

RST#
N.C.

A1
GND

A3
A5
A7

GND
PLL
P3.1
P3.3
P3.4
P3.6

NMI
A0
VCC
A2
A4
A6
VCC
N.C.
P3.0
P3.2
GND
P3.5

BHE#
INST
RPD
TST

GND
A9

A11
A13
A15

GND
X2

VCC

JP
14

P2
.5

/H
O

LD

IN
ST

/T
_I

N
ST

AL
E/

T_
AL

E

JP
6/

TR
A1

6

R
XD

+12V
AL

E/
T_

AL
E

JP5

Auto-BW

GND

VCC

Manual-BW

Bu
sw

id
th

TR
A1

9

JP
17

GND\EA17

TR
A1

7

JP
12

CS0

CS1

CS2

CS3

CS4

CS5

CS0

CS1

CS2

CS3

CS4

CS5

JP24

JP25

JP26

JP27

JP28

JP29

JP44

JP45

JP46

JP47

JP48

JP49

Bu
sw

id
th

 S
el

ec
t

M
em

or
y

M
ap

 S
el

ec
t

JP
9

R
ea

dy

JP31 JP32 JP30

Auto
MAP JP40

Figure 40. POD196–NP / NU (Rev. C and D)

Overview

This pod board contains an Intel 80C196 bondout microcontroller chip suitable for emulating the
Intel 8xC196NP or 8xC196NU. These pods have oscillators operating at 25, 40, or 50 MHz. They
come with 256K or 1 MB of emulation RAM for instructions and/or data, circuits for driving the
cable bus, two PROMs, and three large FPGA chips.

Dimensions

The pod board itself is 6.5 inches by four inches (16.6 cm. by 10.3 cm). The pod requires between
one and two inches (2.5 cm to 5 cm) of space above the target, depending upon which adapter is
being used to connect the pod to the target.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 656565

POD196–NP / NU

0.3 in. 0.1 in.

0.1 in.
0.3 in.

1.80 in.
46.7 mm

2.
20

 in
.

55
.9

 m
m

Figure 41. POD196–NP / NU Footprint Dimensions

Emulation Memory

This pod comes with 256K or 1MB of high-speed static RAM for emulating ROM or target RAM.
Controllers like the 8xC196NP, with 20 address bits can address 1 MB.

Wait States

The emulator uses the number of wait states specified in the emulator Hardware Config dialog box
(or found in the CCBs). In addition, you can use the READY pin to increase the number of wait
states to any number. If the target board continuously holds the READY pin low, the application
will stop executing and the emulator might display one of several error messages. An oscilloscope
trace of the READ or WRITE strobe will show the strobe signal stuck low. If the emulator hangs
in this way, remove the READY jumper to isolate the target READY signal from the emulator
READY pin.

Note
Every time you have the emulator reset the controller, the emulator software writes
$F000 to addresses $1F40 and $1F42. This feature uses chip select 0 to activate
emulation RAM throughout the entire address range and allows you to load code.
Typically, your start-up code will reprogram the chip select registers and your appli-
cation will then run normally.

Chapter 7. Pod BoardsChapter 7. Pod BoardsChapter 7. Pod BoardsChapter 7. Pod Boards

66666666 EMUL196–PC User Guide

POD196–NP / NU

Headers and Jumpers

Pods are usually delivered with jumpers in their factory default position (stand-alone position).
Some of the headers are quite close together and their labels can be hard to read. When you do
connect the pod to a target be sure to examine all jumpers and make sure that they are all correctly
placed. Use the descriptions below as a guide to jumper placement.

ClockClockClockClock

These two headers are labeled JP7 and JP10. They each have two jumper positions: TARGET
and POD. They must be moved as a pair. When set in the TARGET position, the pod controller
receives the clock signal from the target crystal (oscillator). With both in the POD position, the
controller uses the crystal on the pod.

Note
When the clock jumpers are in the POD position, the XTAL signals are completely
disconnected from the target.

PWRPWRPWRPWR

Remove this jumper when the target has its own power supply. When this jumper is in place, the
target will get Vcc from the pod, which can supply up to 0.5 amps. Higher currents cause a signifi-
cant voltage drop along the current path and the pod can be damaged.

RXD/TXD/GNDRXD/TXD/GNDRXD/TXD/GNDRXD/TXD/GND

On all of the 196 pods except POD196–EA, there are three pins labeled RXD/TXD/GND. This
allows receive (RXD), transmit (TXD), and ground (GND) signals for the 196 processor.

If your target outputs debugging information on the serial port, you might want to connect an
RS232 device like a terminal or a PC. The terminal is connected via clips or wires from these pins
to the terminal (input, output, and ground).

This pod includes a MAX232 chip to convert the signal levels from RS232 to TTL levels. Whether
or not you connect the RXD on J1 to an RS232 device, the MAX232 chip will drive
the serial port input pin on the controller. However, if P2.1 is used for low speed I/O, then JP13
should be removed. To allow the MAX232 chip to drive the serial port input pin, place a jumper
on this header.

The TXD pin gives the user the option of transmitting signals (output) to a terminal and a target
simultaneously. The RXD signal on the other hand can only receive a signal (input) from one
source at a time. The following diagram shows how this functions.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 676767

POD196–NP / NU

Figure 42. Data Flow to the Target and the MAX232 Chip

 WARNING

The processor cannot handle input from two different sources at the same time. If you are con-
nected to a terminal, through the MAX232 chip you must be in stand-alone mode (not connected to
a target). If you are connected to a target the RXD jumper on JP13 must be removed, so you are
not connected to a terminal and a target at the same time.

RSTRSTRSTRST

Occasionally, a target might contain an external device designed to reset the controller by pulling
the /RST pin low (i.e., a watchdog timer). During debugging, this might be inconvenient. The sig-
nal from the target /RST pin passes through the RST header. Removing the RST jumper prevents
the external device from resetting the pod controller.

Inst

G
N

D
\EA18

G
N

D
\EA19

TRA18

JP21

EA16

G
N

D

JP6/TRA16

JP5

Auto-BW

G
N

D

VC
C

M
anual-BW

Buswidth

TRA19

JP17

G
N

D
\EA17

TRA17

JP12

C
S0

C
S1

C
S2

C
S3

C
S4

C
S5

C
S0

C
S1

C
S2

C
S3

C
S4

C
S5

JP24

JP25

JP26

JP27

JP28

JP29

JP44

JP45

JP46

JP47

JP48

JP49

Buswidth Select Memory Map SelectAuto
M

AP
JP40

Figure 43. POD196–NP / NU Configuration Headers

Chapter 7. Pod BoardsChapter 7. Pod BoardsChapter 7. Pod BoardsChapter 7. Pod Boards

68686868 EMUL196–PC User Guide

POD196–NP / NU

BUSWIDTHBUSWIDTHBUSWIDTHBUSWIDTH

The bondout on the pod provides a buswidth signal that identifies whether memory access is eight
or sixteen bits wide. At frequencies above 25 MHz, the buswidth signal is not fast enough. There-
fore, Nohau provides a second option called Manual Buswidth Signal (Manual BW). This signal is
derived from the user’s chip selects and will be available five nano-seconds after the chip selects
are ready. Proper chip select setup is required to insure that the pod can function correctly up to
50 MHz.

JP5 should always be in the Auto-BW position at the time of power up/software start. When you
use the manual position, your chip selects must be programmed and JP44 through JP49 must be
jumpered accordingly.

The buswidth header must always have a jumper in either the Manual-BW or the Auto-BW posi-
tion. Do not install more than one jumper in these two positions at a time! In the Auto-BW posi-
tion, the buswidth signal to the pod comes from the pod CPU. In the Manual-BW position, the
buswidth signal comes from a PAL device on the pod. The PAL logically ANDs all these chip se-
lect signals from the Buswidth Select headers: JP44 – JP49. Because a chip select signal is active
low, the signals need to be logically ANDd and not ORDd. An asserted chip select signal that has
it's corresponding jumper installed will force the Manual-BW signal low, indicating an 8-bit wide
bus cycle.

Note
The Buswidth Select headers JP44 through JP49 are the ones that can control the
buswidth. The other chip select signal headers called Memory Map Select headers,
or JP24 through JP29 serve a different purpose.

 WARNING

Do not install more than one jumper on the BUSWIDTH header (JP5). If you do, you are likely to
damage the target, the pod, or both.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 696969

POD196–NP / NU

Buswidth SelectBuswidth SelectBuswidth SelectBuswidth Select

All the chip select signals are brought to their respective headers so they can be used to control the
Manual-BW signal. This is necessary if you are running your target at speeds higher than 25 MHz.
At these high speeds, the Manual-BW logic will make sure that the buswidth signal will arrive
early, reducing noise. If the Auto-BW signal is used at these high speeds, your target can latch the
wrong address due to noise.

Note
If you have the jumpers set to use a Manual-BW signal the very first time you start
up the emulator hardware and software, you must have a jumper on header JP44.
If you do not, you will see unwanted breakpoints. You only need to have this jumper
there the first time you power up the emulator. After that, it can be removed.

Another way to avoid these breakpoints is to:

1. Select the Hardware Breakpoint menu

2. Add a temporary breakpoint

3. Click OK

4. Go back to the Hardware Breakpoint menu

5. Remove the temporary breakpoint.

If you have a jumper on the AutoMap header (JP40):

1. Open the Memory Map dialog box

2. Set a temporary mapping

3. Click OK.

4. Remove it.

AutoMap HeaderAutoMap HeaderAutoMap HeaderAutoMap Header

Memory can be mapped either with a software setting or by using chip select signals. Removing
the jumper on this header (JP40) will ensure that the software memory mapping signal does not
reach the mapping logic.

Chapter 7. Pod BoardsChapter 7. Pod BoardsChapter 7. Pod BoardsChapter 7. Pod Boards

70707070 EMUL196–PC User Guide

POD196–NP / NU

EA16-EA19EA16-EA19EA16-EA19EA16-EA19

Each of these jumpers sits between the controller and the address signals going to the emulator and
trace boards. These address signals are used to correctly address emulation RAM on the pod, lo-
cate write cycles in Shadow RAM and assign addresses to trace records in the trace buffer.

If your application uses more than 16 address bits, for every address bit above 15 that the applica-
tion uses for addressing, move the corresponding jumper from the GND position to the EA1x po-
sition. This will pass that address signal on to the emulator and trace boards. For each of the bits
that are used for I/O instead of addressing, put the jumper on the GND side.

 WARNING

Do not install more than one jumper on EA16 (JP6). If you do, you are likely to damage the target,
the pod, or both.

P2.5/HOLDP2.5/HOLDP2.5/HOLDP2.5/HOLD

Pin 5 of Port 2 can output a HOLD signal. If your applications use that pin for a HOLD signal, put
the jumper in the HOLD position. If Pin 5 of Port 2 carries low speed I/O, put the jumper in the
P2.5 position.

INST/T_INSTINST/T_INSTINST/T_INSTINST/T_INST

Locate this jumper according to how Pin 5 of Port 2 is being used. When using P2.5 to carry a
HOLD signal, put the jumper in the T_INST position. If that pin carries low speed I/O, place the
jumper on the INST position.

ALE/T_ALEALE/T_ALEALE/T_ALEALE/T_ALE

Like the previous jumpers, locate the jumper according to how Port 2 of Pin 5 is used. If it carries
a HOLD signal, place the jumper in the T_ALE position. If Port 2 of Pin 5 carries low speed I/O,
place the jumper in the ALE position.

JP24 through JP29JP24 through JP29JP24 through JP29JP24 through JP29

These headers pass the six chip select signals produced by the 8xC196NP. Most users will find the
software control more convenient than using these headers. If you find the software memory map-
ping does not meet your needs, use the following description to help you configure the registers
and jumpers.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 717171

POD196–NP / NU

With a jumper in place, memory controlled by that chip select signal is mapped to emulation
RAM. Without a jumper, memory is mapped by software to either the pod or the target.

For especially high-speed applications, you can remove a jumper on the pod labeled Auto Map or
JP40. Removing this jumper will make the memory mapping faster by disconnecting the software
mapping. In this configuration, memory mapping is only dependent upon headers JP24 through
JP29 and the chip select signals they carry.

Symbols in the Trace Window

Right out of reset the 83C196NP looks for the start-up code and CCB values starting at FF 2000.
(The 80C196NP which has no ROM, uses external bus cycles and will only use 20 address bits,
which will truncate the address to 0F 2000.) Many applications will compile and link code (and all
code symbols) to page FF 0000 and up. If that application also maps global variables to address 0
and then uses some of the higher address pins for low speed I/O, the trace disassembly and
Shadow RAM will be unable to associate the trace buffer addresses to the correct code symbols.
(Some of the EA1x jumpers will need to be in the GND position.) If this is true for your applica-
tion, there is a workaround you might want to consider.

Under these circumstances, to correctly associate addresses with symbols, the trace board needs to
receive an address that is different from the one appearing on the address pins. If you run a wire
from the EA1x side of the highest TRA1x header not carrying an I/O signal to the center pins on
the higher address headers, the trace board will get correct address for code space and will likely
get correct addresses for data space bus cycles.

The application in shown in Figure 44 uses the two highest address pins for low speed I/O.
The 256K by 8 RAM chip for holding data need 18 address bits: bit 0 through bit 17. Again, the
instructions are mapped to the top of the address range: from FF 0000 to FF FFFF hex. This
wiring ensures that when address Pin 17 is high, the trace board will receive high signals for
TRA17, TRA18, and TRA19. If this example application has global data symbols between
20000 hex to 40000 hex, they will not be identified correctly in the Trace window. This wiring
will have no effect on how the trace displays global symbols below 20000 hex or local variables
found on the stack.

M
_I

N
S

EA
17

\G
N

D

EA
18

\G
N

D

EA
19

\G
N

D

JP
12

\T
R

A1
7

JP
17

\T
R

A1
8

JP
21

\T
R

A1
9

EA
16

G
N

D

JP
6/

TR
A1

6

Figure 44. Wiring for the 256K by 8 RAM Chip

Chapter 7. Pod BoardsChapter 7. Pod BoardsChapter 7. Pod BoardsChapter 7. Pod Boards

72727272 EMUL196–PC User Guide

POD196–NP / NU

Mapping Memory Using Chip Selects

While debugging your hardware and software, you typically want to use the RAM on your target
for data and replace your EPROM with emulation RAM so you can reload and run your applica-
tion quickly. Under most circumstances, this can be easily achieved with software memory map-
ping. However, on pods with 256K of emulation RAM, address wrapping in the memory mapping
scheme can not support all possible target designs.

Essentially, if your design has more than 256K of RAM and ROM combined, you might want
to use the chip select signals instead of software memory mapping to eliminate the address
ambiguity.

On pods with 256K of emulation RAM, address bits above bit 17 are ignored. Mapping address
10000 hex to the pod also maps 50000 hex, 90000 hex, and D0000 hex to the pod. The chip se-
lects, however, do not address wrap. If a chip select signal maps address 10000 hex to the pod,
only that address will map to the pod, and not the other addresses.

Note
Pods sold with 1 MB of emulation RAM have the extra hardware to correctly map
every address in software. On 1-MB pods, software memory mapping works cor-
rectly for all combinations of target RAM and ROM, but can not be fast enough for
higher clock speeds.

To use chip selects to map memory, do the following:

1. Map all addresses to the target.

2. Use a chip select signal (or your target PAL output) to override the software mapping.

3. Remap an address range back to the emulation memory on the pod.

Either this signal can be a chip select signal from the 8xC196NP controller, or it can be the output
from some address decoding logic.

 WARNING

Mapping all RAM address to a fully functioning target will almost never cause any new problems.
However, the emulator cannot function normally when RAM addresses are mapped to nonfunc-
tioning RAM.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 737373

POD196–NP / NU

RESISTOR 7 PACK

V C C

FROM SOFTWARE
MEMORY MAPPING

JUMPERS

 CS for ON-POD MEMORY

EMULATION
RAM ON POD

JP24
JP25
JP26

JP27

JP29
JP28

P3.0/CS0
P3.1/CS1
P3.2/CS2

P3.3/CS3
P3.4/CS4
P3.5/CS5

8xC196-NP
RD

WRL

WRH

ICE_READ

ICE_WRL

ICE_WRH

USER_READ

USER_WRL

FAST244

QUICK
SWITCH USER_WRH

TO TARGET

INTEL

JP40

Figure 45. Schematic of Memory Mapping

To use a chip select signal, place a jumper on the corresponding header. JP24 through JP29 pass
/CS0 through /CS5 respectively. When any jumpered chip select signal is active (low) bus cycles
will be direct to the pod.

To use the output from a PAL on your target, run a wire from the PAL to the JP24 header, to
the pin closest to the edge of the pod. When that pin is pulled low by the PAL, bus cycles will
be directed to the pod.

Note
The read-strobe and write-strobe signals are gated so there can never be a bus col-
lision between emulation RAM and target memory devices.

CS0 Initialization Bug: During the initialization of the chip select registers, CS0
goes inactive for a short time when the NP bondout controller writes to ADDRMSK0
(0x1f42). This appears to be a problem only if the CCBs are set for zero or one wait
state. This will directly affect the Manual Mapping feature since it uses the chip se-
lect signals for mapping. To correct this problem, set the CCBs for two or more wait
states when using the Manual Mapping feature. This is an NP bug only; the NU pod
is not affected.

Chapter 7. Pod BoardsChapter 7. Pod BoardsChapter 7. Pod BoardsChapter 7. Pod Boards

74747474 EMUL196–PC User Guide

Port Replacement Unit

Overview

Many applications, especially single-chip applications use the bus control pins to carry low speed
I/O signals. An emulator needs the bus control signals (address pins, data pins, WR, RD, etc.) be-
cause it uses external RAM and ROM to emulate the ROM on the controller. A PRU is a hardware
device that uses logic to allow the pod controller to have the bus control signals it needs while also
allowing the applications to behave as though it has exclusive use of the shared pins. It fits be-
tween the pod and the Nohau adapters. Once installed, it mimics the I/O port control registers and
uses those registers to configure the replacement ports just as a normal controller would configure
the normal ports. This way, the PRU can replace ports and often not require any target hardware or
software changes.

When to Use a Port Replacement Unit

The emulator and trace boards always need the address and bus control signals that are provided
by Ports 3, 4 and 5. To accommodate emulators, the bondout controller always uses these ports for
address and bus control signals. Unlike a real JR, KR or NT, these pins cannot be configured for
low speed I/O. On the pod, those registers that control those pins behave like external RAM, not a
register. If your application needs any of those pins for low speed I/O or uses the chip in single-
chip mode, you need to use a PRU to provide those low speed I/O signals to your applicatio

U2 U1

Pin 1

Figure 46. Chip Side of the KR/NT PRU

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 757575

This one PRU is designed to support all the following processors:

• 8xC196JR, 8xC196KR, 8xC196KS,

• 8xC196JQ, 8xC196KQ, 8xC196NQ,

• 8xC196JT, 8xC196KT, 8xC196NT

• 8xC196CA, 8xC196CB

Note
The EMUL196-PC PRU/KR/NT Rev. A and Rev. B do not support the 8xC196CA
or 8xC196CB

Installing the PRU

To install the PRU, plug the socket on the chip-side of the PRU into the pins on the under side
(without the silk screen writing) of the pod board. Ensure that the edges of the PRU line up with
the edges of the pod. Plug the pins all the way into the socket. This might require slightly bending
the black plastic cover on the pod.

For simplicity, the following paragraphs describing the PRU will only mention the 8xC196KR, but
that text applies equally to targets using other supported controllers. At the end of the PRU sec-
tion, there is a paragraph describing 20 bit addressing, not found on the KR part.

PRU Headers and Jumpers

There are six headers with jumpers on this PRU, JP1 through JP6. Five of them are simple to de-
scribe and use. The sixth (JP2) is explained in detail in the “PRU Header JP2 – Accessing P3, P4
and P5” section later in this chapter. See the following note:

Note
JP2 (intended for Nohau use only) is not installed on the PRU to prevent accidental
use.

 WARNING

Passing through JP1 is the /HLDA signal from Port 2.6. Do not install a jumper on this header
unless instructed to by Nohau Technical Support!

Chapter 7. Pod BoardsChapter 7. Pod BoardsChapter 7. Pod BoardsChapter 7. Pod Boards

76767676 EMUL196–PC User Guide

JP6
JP5

JP3
JP4

S/N NOHAU CORP. PRU 196 REV D

Pin 1

JP1/2

Figure 47. Header Side of KR/NT PRU

Headers JP3 through JP6 only apply to users with 8xC196-NT parts and other controllers that have
more than 16 address bits. With controllers, that have 16 address bits put all four of these jumpers
on the two pins further away from the edge. They control whether the PRU passes those four bits
on to the trace board. JP3 corresponds to EA16. The description of JP3 also applies to JP4 - JP6.

If the EA16 bit is configured for low speed I/O, move the jumper on the JP3 to the grounded posi-
tion (the two pins closest to the edge). This will not ground the EA16 signal. Do likewise for the
other headers. JP4 corresponds to EA17, JP5 corresponds to EA18, and JP6 corresponds to EA19.

PRU Special Function Registers

The following is a list of the Special Functions Register (SFRs) requiring port reconstruction on
the 196ET bondout chip:

Port 3Port 3Port 3Port 3

IFF4-P34_DRV Port 34 drive (0=open drain output or input. 1=push/pull output)

IFFC–P3REG Port 3 register This register contains the value to be placed on the pins.

IFFE–P3PIN Port 3 pin This register hold the actual value read from the pins.

Port 4Port 4Port 4Port 4

1FFD–P4REG Port 4 register This register contains the value to be placed on the pins.

IFFC–P3REG Port 3 register This register hold the actual value read from the pins.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 777777

Port 5Port 5Port 5Port 5

1FF1–P5MODE Port 5 mode register (0=I/O, 1=system function)

1FF3–P5DIR Port 5 I/O register (0=push/pull, 1= input or open drain output)

1FF5–P5REG Port 5 register This register contains the value to be placed on the pins.

IFF7–P5PIN Port 5 pin This register hold the actual value read from the pins.

PRU Reset ValuesPRU Reset ValuesPRU Reset ValuesPRU Reset Values

EA# Pin High EA# Pin Low
1FF1=D0H D9H

1FF3=FFH FFH

1FF4=00H 00H

1FF5=FFH FFH

1FFC=FFH FFH

1FFD=FFH FFH

Port 3 and 4 ReconstructionPort 3 and 4 ReconstructionPort 3 and 4 ReconstructionPort 3 and 4 Reconstruction

The 196ET bondout requires the PRU when using any pin of Port 3, 4 or 5 as low speed I/O. The
POD196–256–KR/NT with the 196ET bondout chip always puts out AD0-AD7 on Port 3 and
AD8-AD15 on Port 4. The PRU reconstructs Ports 3 and 4 to mimic the real chip. If external
access is made, then the address/data bus is driven on Ports 3 and 4. The following is a list of
design details for Port 3 and 4 reconstruction:

• Port 3 and 4 will pass address/data to the target whenever external access is made. The
196ET, determines this by the EA# signal address range. When the user ties the EA# pin high
and code makes internal access only, then the Port 3 and 4 pins become low speed I/O where
the values are determined by the values in the Port 3 and 4 SFRs.

• Whenever the user makes external access outside the internal memory range of the chip
(determined by the CPU), the PRU will pass the address/data bus to the user on Port 3 and 4
instead. As soon as the CPU resumes internal operation, the initial values on the Port 3 and 4
pins will be reinserted.

• P3REG and P4REG contain the values to be written to the port pins. P3PIN and P4PIN con-
tain the actual value read on the pin itself.

• P34_DRV indicates whether Port 3 or 4 is to be push/pull on an open drain/input.

Note
The P34_DRV register contains only two important bits:
Bit 6 controls whether the entire Port 4 is to be push/pull or an open drain/input.
Bit 7 controls whether the entire Port 3 is to be push/pull or an open drain/input.

Chapter 7. Pod BoardsChapter 7. Pod BoardsChapter 7. Pod BoardsChapter 7. Pod Boards

78787878 EMUL196–PC User Guide

Port 5 ReconstructionPort 5 ReconstructionPort 5 ReconstructionPort 5 Reconstruction

The 196ET bondout requires the PRU when you plan to use any pin of Port 5 as low speed I/O.
The POD196–KR/NT with the 196ET bondout chip always puts system function signals out on
these pin locations. Therefore, Port 5 reconstruction requires that these same system signals can be
passed to the users target with a maximum 1ns delay (i.e. ALE, RD or WR are critical timing sig-
nals). The following is a list of design details for Port 5 reconstruction:

• Port 5 is more complicated to reconstruct than Port 3 and 4 because each pin of Port 5 can be
either a system function or an I/O pin. In addition, each pin has an associated bit that deter-
mines if it should be push/pull or open drain/input.

• The PRU does not have access to the CCB bits fetched upon power-up. These bits force a
certain mode of operation, therefore a few Port 5 pins are used as a system function upon reset
until a write is made to the P5MODE register. P5.6 (Ready), P5.7 (BW) and P5.4 (SLPINT)
are always a system function upon reset. P5.0 (ALE) and P5.3 (RD#) depend on the EA# pin;
these pins are system function only when the EA# pin is low upon reset; otherwise when the
EA# pin is high, they are tri-state. All other Port 5 pins are weakly pulled high until a write to
the 5MODE register is made.

• P5REG contains the value to be forced to the pins. P5PIN contains the actual value seen on
the pins. P5DIR contains the direction of each pin (input or output). P5MODE contains the
mode for each pin (system function or I/O).

Design Limitations and Silicon Bugs—PRU

The bondout chip on the 196ET has a known bug, which affects the performance of the PRU only
when you set the CCBs on the chip to 8-bit only mode. In brief, when the 196ET is in 8-bit only
mode and performs writes to odd addresses (using ST or STB instruction), the WRITE HIGH pin
does not work. The only way to get around this is to enter Dynamic buswidth mode by the CCBs
and ground the buswidth pin which will automatically place the 196ET into 8-bit mode. A jumper
field (JP5) on the pod will take care of this.

PRU Header JP2—Accessing P3, P4 and P5

Note
If your application has a 16-bit data bus or if it uses the BW pin to control dynamic
buswidth, you can ignore this section.

This section applies to users of applications were the buswidth bits in the CCBs force an 8-bit
wide bus. These users need to read the next few paragraphs to determine if the JP2 header should
be shorted or not.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 797979

The ST instruction stores 16 bits of register data into a 16-bit operator (memory location). The
STB instruction is similar, but only stores 8 bits at a time. These two instructions interact with
the buswidth and address to create a complicated set of permutations between the instruction used,
the buswidth, and whether the data is word aligned or not. Unfortunately, some of these permuta-
tions operate differently in the bondout controller than in real KR, JR or NT controllers when
writing to the PRU.

The PRU can correct these flaws, but only one at a time. If your program sets the buswidth to 8
bits by setting the CCB registers, and your program uses both the ST and the STB instruction, one
of those two instructions will operate incorrectly, no matter how you set the jumper on JP2.

As an illustration of what can go wrong, the following table shows the conditions you might en-
counter and the jumper settings appropriate to each.

Enter #1234 into a register by executing LD 1C, #1234

Assume that addresses 1FFC and 1FFD contain FF.

8-Bit Store Instructions 16-Bit Store Instructions

CCB Settings of 8xC196 STB 1C, 1FFC STB 1C, 1FFD ST 1C, 1FFC ST 1C, 1FFD

Expected Result
(All Modes) FF34 34FF 1234 12FF

JP2 is OUT and:
(16-bit only or Dynamic BW or
8/16-bit with SRH or BHE Mode) FF34 34FF 1234 12FF

JP2 is OUT and:
(8-bit only or BHE Mode) FF34 34FF FF34 * 12FF

JP2 is IN and:
(8-bit only or BHE Mode) 3434 * 34FF 1234 12FF

JP2 is OUT and:
(8-bit only or WRH Mode) FF34 FFFF * FF34 * FFFF *
JP2 is IN and:
(8-bit only or WRH Mode) 3434 * FFFF * 1234 FFFF *

* The instructions to these addresses result in errors.

As mentioned previously, most of the time, for most of the permutations, the jumper can be left off
and every bus cycle will execute exactly as it does on the real controller. However, if the CCB
registers set the buswidth to 8 bits and your compiler generates ST (16-bit wide store) instructions
to set the Port 3, Port 4 or Port 5 registers, the pod and PRU need header JP2 shorted.

8xC196 vs. POD196 with a PRU8xC196 vs. POD196 with a PRU8xC196 vs. POD196 with a PRU8xC196 vs. POD196 with a PRU

Without a PRU, the SFRs that support low speed I/O on all three ports behave like external RAM,
instead of behaving exactly like the same registers in a real KR controller.

This PRU uses two Intel FLEXlogic 780 chips and special features found on the bondout control-
ler which, together, do a good job of mimicking Ports 3, 4 and 5. The imitation is close to perfect.
Functionally, Port 4 in the PRU and on a real 8xC196KR work identically. Electrically, there are

Chapter 7. Pod BoardsChapter 7. Pod BoardsChapter 7. Pod BoardsChapter 7. Pod Boards

80808080 EMUL196–PC User Guide

some differences that will be described below. Ports 3 and 5 are different in small electrical and
functional ways. If you are using a PRU, read this section thoroughly, and make some notes in
your 8xC196 manual. Doing so might save you a great deal of time.

Port 3Port 3Port 3Port 3
Port 3 is functionally identical to Port 3 on the controller.

Electrically, there are two small differences between the controller Port 3 and the PRU Port 3.
Every pin on KR Port 3 is specified to sink at least 3 mA at 0.45V and source at least –3 mA at
Vcc-0.7V. Instead, the PRU Port 3 pins can sink 12 mA and source –4 mA.

Port 4Port 4Port 4Port 4
Port 4 is functionally identical on the controller and on the PRU.

Like Port 3, electrically, there are two small differences between the controller Port 4 and the PRU
Port 4. Every pin on a KR Port 4 is specified to sink at least 3 mA at 0.45V and source at least –3
mA at Vcc-0.7V. Instead, the PRU Port 4 can sink 12 mA and source –4 mA.

Port 5Port 5Port 5Port 5
The design of Port 5 is different than Ports 3 and 4. In the Intel User’s Manual, Figure 10.3 shows
the circuit schematic for Port 5. Compare Figure 49 with Figure 48 for changes to the port circuit.
QW has been replaced by a 100K Ohm pull-up resistor which approximately matches the weak
pull-up current provided by QW during /RESET.

In the PRU, the transistors driving the Port 5 pins are slightly different. In the 8xC196KR, transis-
tor QL can sink at least 3 mA at 0.45V. In the PRU, that transistor can sink 12 mA. Likewise, QU
can source at least –3 mA at Vcc-0.7V. In the PRU, that transistor can source –4 mA.

If you compare Figure 48 to Figure 49, you will notice two major differences. /WKPU in the con-
troller has been replaced by a normal pull-up resistor and a 100K Ohm resistor, and the –300 ns
delay in the RESET portion of the circuit is not present in the PRU. Functionally, the differences
between the port and the PRU are in the registers.

Vcc

Vcc

QL

I/O PIN

P5_PIN

RESET

QU

Vcc

-300nS DELAY

WKPU

PPU

S

R
Q

RESET

ANY WRITE TO PxMODE

Figure 48. 8xC196 Port 5 Circuit

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 818181

Vcc

QL

I/O PIN

P5_PIN

QU

Vcc

S

R
Q

RESET

ANY WRITE TO PxMODE

100K Ohm

QPU

Figure 49. PRU Port 5 Circuit

Chapter 7. Pod BoardsChapter 7. Pod BoardsChapter 7. Pod BoardsChapter 7. Pod Boards

82828282 EMUL196–PC User Guide

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 838383

 Starting the Emulator and Seehau Soft-
ware

Figure 50. Seehau for EMUL196–PC

Hardware Connection

When running the configuration software, the hardware is not required to be connected. To run
the Seehau software (except in Demo mode) the hardware is required to be attached and running.
It is recommended that you first start the Seehau software with the hardware connected in the
stand-alone mode (not connected to the target board). Verify that the jumpers on the pod are
set in their default configuration with the power jumper inserted and the crystal jumpers set for
internal crystal.

Note
In order to run the following steps, you must have first configured the Seehau soft-
ware. See Chapter 2, “Installing and Configuring the Seehau Software.”

Chapter 8. Starting the Emulator and Seehau SoftwareChapter 8. Starting the Emulator and Seehau SoftwareChapter 8. Starting the Emulator and Seehau SoftwareChapter 8. Starting the Emulator and Seehau Software

84848484 EMUL196–PC User Guide

Starting Seehau

To start the Seehau software, do the following:

1. Double-click the Seehau 196 icon. The Seehau main window opens (Figure 50). Seehau will
load its configuration from the Startup.bas file. The macro is displayed in red at the bottom of
the main window while Startup.bas is running.

2. While the software is starting, the reset light goes on and off, resetting the pod. When
the software has completed its startup, you can position and resize the main window to
your preference.

3. To open new windows, click the New menu, and then select the type of window you want from
the list.

Note
If you are using an HSP or USB box, make sure that you have the box powered on
prior to starting the software. If the box is not powered on you will receive an error
message when the software tries to initialize the hardware. In order to clear the
error, you may have to quit the software and restart it.

4. If you receive a fatal error when starting the Seehau software, see Appendix A, “Trouble-
shooting”, or contact Nohau Technical Support at support@nohau.com.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 858585

 Time Program Example

Example Program
Nohau provides a small example program called Xx_time.omf that is found in the
C:\Nohau\Seehau196\Examples default directory. (Xx is the specific pod type you are using. For
example, Np_time.omf for POD-196-NP.) The source code, xx_time.c is also present in these pod
specific directories.

Start the Seehau software following the instructions in Chapter 8, “Starting the Emulator and
Seehau Software.”

1. Resize the windows on your screen, but do not add the Trace or Watch windows.

2. Open the Seehau File menu and select Load Code. The Open dialog box appears (Figure 51).
Click the down arrow in the Files of type list, and select OMF Files.

3. Highlight the Xx_time.omf file for your pod and click Open. You can also double-click the
file name and it will load into the emulator.

4. Click the Source Step Into button and the program will run to the start of MAIN.

Note
The Xx_time.c tab appears on the Source window. You can easily switch between
assembly and source language by clicking on these tabs.

5. Right-click the Source window with the Xx_time.c tab selected and select Mixed Mode. You
will see assembly code mixed in with the appropriate source lines as in Figure 52. Notice the
program counter (PC) indicated by the blue blocks at the start of MAIN

Figure 51. Loading Code

Chapter 9. Time Program ExampleChapter 9. Time Program ExampleChapter 9. Time Program ExampleChapter 9. Time Program Example

86868686 EMUL196–PC User Guide

Figure 52. Time Program

1. To remove Mixed Mode, right-click in the Source window and clear Mixed Mode so only the
C source code remains.

2. Click the Source Step Into button repeatedly and the program counter will advance through the
CPU initialization code. Notice that where there is assembly code only, the steps are done at
source level.

Watching Data in Real-Time with Shadow RAM

The Nohau Shadow RAM feature allows you to view memory contents in real-time without steal-
ing cycles from the emulation CPU. This example assumes you have completed all the steps so far
in this guide and that Xx_time.omf is still loaded in your emulator. For more detailed information
on Shadow RAM, refer to the “Shadow RAM” section in Chapter 3, “Installing and Configuring
the Emulator Board.”

To open a Data window:

1. Click the Data button, or from the New menu, click Data. The Data window opens(Figure 53).
The data will be in hexadecimal as shown. Resize the window as needed.

2. In the address box at the bottom, highlight the existing address and type 5000.

3. Press ENTER.

Figure 53. Data Window

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 878787

Figure 54. Data Menu

4. Right-click the Data window. The Data menu appears (Figure 54).

5. To change the data display mode, right-click in the Data window and select Display As. The
Format dialog box opens. Select the ASCII type.

From the Data window, the number in red in the top left corner indicates the address of the
currently selected location in this window.

6. Right-click again, select Address Space, and then select SHADOW.

The address at the bottom represents where the mouse is pointing. The box highlighted in blue
is the last location you selected. Data in red indicates that it has been modified by the last in-
struction executed. You will not see ASCII data shown if Xx_time.c has not been appropri-
ately initialized at these locations.

7. Click the GO button or press F9. The program Xx_time.c will run.

The time will be updated in real-time. No CPU cycles are stolen to accomplish this.

Chapter 9. Time Program ExampleChapter 9. Time Program ExampleChapter 9. Time Program ExampleChapter 9. Time Program Example

88888888 EMUL196–PC User Guide

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 898989

 Trace Memory Example

Overview

This section describes the trace memory including how to set up a trigger to start and stop the trace
memory recording and how to stop program execution. Do not change any settings in the software.
You will need your present settings to continue. You must have the optional trace board to com-
plete this section.

Many emulators cannot view the trace without stealing cycles or even stopping the emulation.
The Nohau emulator can do this in real-time. It uses a 16-bit dedicated microcontroller to do all
the trace and trigger housekeeping chores, rather than stealing cycles from the special emulation
controller.

Running the Example

Make sure the emulator is running the Xx_time.c program. The two boxes in the bottom left cor-
ner of the main window contain Running. The Go and Trace buttons are red. You should have the
Data window open and see the time changing in real-time.

1. From the New menu, click Trace to open the Trace window.

2. Position the windows so you have the Trace and Data windows visible. The Trace window
might have some data recorded in it or be empty. This depends on previous emulation runs.

Note
The Trace window can be empty if the trace buffer is being filled. It is not possible
to view the trace contents at this time. The status bar at the bottom of the Trace
window shows two things: (1) if, the trace memory is already full and (2) how many
trigger events have occurred. At this time, there should be zero trigger events.

Figure 55. Trace Window Showing Trace Memory

Chapter 10. Trace Memory ExampleChapter 10. Trace Memory ExampleChapter 10. Trace Memory ExampleChapter 10. Trace Memory Example

90909090 EMUL196–PC User Guide

3. Click the Stop Trace button.

The Trace window now contains recorded controller cycles. Figure 55 shows the trace
memory. You can add columns by right-clicking the Trace window and selecting them.

Note
The addressing modes are displayed. The Trace window can display C source code
with the resulting assembly code.

4. Start the trace memory by clicking the Start Trace button.

Note
The time displayed in the Data window does not stop or slow. The trace memory
is a circular buffer and is being continuously overwritten with new values. Thie
will continue until the recording is stopped either manually or with a trigger event.
Triggers have the ability to start and stop trace recording.

5. The Trace window can display a variety of bus cycles. Right-click the Trace window or from
the Config menu, click Trace. The Trace Configuration dialog box opens ().

6. Click some of the options to see what functions are available in the Trace Configuration dialog
box. For details on all the options, refer to Chapter 3, “Installing and Configuring the Trace
Board,” or press the F1 key to open Seehau Help.

Figure 56. Trace Configuration Dialog Box

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 919191

Saving the Configuration

1. To save the Emulator configuration, click the Config menu and select Save Emul Cfg.

2. To save the Trace configuration, click the Config menu and select Save Trace Cfg.

3. The Save Settings dialog box opens where you can choose the filename for the newly created
macro. Enter a filename of your choosing and click Save.

The macro is ready to use and will be accurately recreate your emulator configuration settings.
Configuration settings are also saved when general Seehau settings are saved.

Chapter 10. Trace Memory ExampleChapter 10. Trace Memory ExampleChapter 10. Trace Memory ExampleChapter 10. Trace Memory Example

92929292 EMUL196–PC User Guide

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 939393

 Shutting Down Seehau

Steps to Shut Down Seehau

1. Click the X (Close button) at the far right of the title bar or from the File menu click Exit. The
Save Settings dialog box opens (Figure 57).

2. To save your settings, type Startup.bas or another macro file name in the File name text
box.

3. Select the Use as Default option in the lower right of the dialog box. When Seehau starts, it
will use Startup.bas or the macro file you entered in the File name text box.

4. Under Macro Save Type in the lower portion of the dialog box, click Config, Buttons, or
Windows. The items you select will be saved in the specific areas of the environment macro
indicated by the file name.

5. Click Save and exit from Seehau. If you do not want to save your settings, click No Save.

If you need assistance, refer to Appendix A, “Troubleshooting,” or contact Nohau Technical
Support (support@nohau.com).

Figure 57. Save Settings Dialog Box

Chapter 11. Shutting Down SeehauChapter 11. Shutting Down SeehauChapter 11. Shutting Down SeehauChapter 11. Shutting Down Seehau

94949494 EMUL196–PC User Guide

Important Software and Hardware Notes

Always use Uninstall to unload any existing version of Seehau from your computer before loading
another copy. Do not simply delete the Seehau files or folders. Do not install Seehau on top of an
existing copy.

To use Uninstall, do the following:

1. In My Computer, double-click Control Panel.

2. Double-click Add/Remove Programs.

3. A list of installed programs is shown.

4. Select (highlight) the Seehau 196 and click Add/Remove. (In this case it will remove the
selected program.)

5. Backup your personal macros and source files into another directory before uninstalling the
Seehau software. (The Macro subdirectory is not usually deleted on the uninstall, but as a pre-
caution you should always backup your files before starting this process.)

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 959595

Appendix A. Troubleshooting

Overview

In many cases, if you are having trouble with the Seehau software and need help one of the fastest
and easiest ways to get an answer is to select Seehau Help. While this might not answer all ques-
tions it is a valuable resource and should be used before calling technical support.

If you have trouble with your emulator, you can contact Nohau Technical Support at 1-888-886-
6428 or email us at support@nohau.com. If you contact us, the engineer will likely lead you
through the following steps to test for the most common problems. To save time, you can also test
for the problems by looking over this section to determine if your problem is describe here.

The items to check for are in order following this section. Start at the first item and continue
until the emulator works or you have reached the end of the list. Each item is a short version of
a description from earlier in this guide. Most items have at least one chapter number where more
details can be found.

If you encounter a problem when starting or running the emulator and/or Seehau, try the following
troubleshooting tips. For detailed troubleshooting instructions, contact Nohau Technical Support at
support@nohau.com.

 WARNING

Always turn the power off before you plug in or unplug boards, ribbon cables, or the pod board to
avoid hardware damage.

Before you start troubleshooting, first check the following items:

• Are the cables connected properly?

• If you are using an HSP or USB box, is the power turned on?

• Did you remove any foam that might be present on the bottom pins of the pod?

• If the pod is not connected to your target, are the power and crystal jumpers/switches in the
POD position?

• If the pod is connected to your target, is the target power turned on?

• Is the pod connected to the emulator board?

Appendix A. TroubleshootingAppendix A. TroubleshootingAppendix A. TroubleshootingAppendix A. Troubleshooting

96969696 EMUL196–PC User Guide

• Verify the proper pod type is selected, and jumper configurations match the default configu-
ration. (Refer to Chapter 6, “Installing and Configuring the Pod Boards,” and Chapter 7, “Pod
Boards” for your specific pod type.)

• Determine if the emulator and pod operate together when not connected to the target system.
Remove the pod from the target and attempt to start the system in stand-alone mode. The
emulator does not require a target. To troubleshoot in stand-alone mode, make sure the power
jumper is selected for internal power and the crystal (clock) jumpers are in the pod position.
(Refer to Chapter 7, “Pod Boards.”)

• Did you configure Seehau correctly for your MCU and pod?

• Open the Task Manager and check that ncore is no longer running after an access violation.

• Verify there is no address conflict with the PC. If you are using the default emulator board ad-
dress (200), make sure that there is no other device using 200 – 208 in your PC. For example,
a game port is usually located at address 201. If there is a conflict, refer to Chapter 3,
“Installing and Configuring the Emulator Board” on how to select another address.

• If you have trouble printing while the printer is connected to the HSP, be aware that the HSP
must be powered on for the printer to receive printer port signals. (See the “Debugging the
Parallel Port” section later in this chapter.

• Reload Seehau. To reload, use the Windows Add/Remove Programs option. This ensures all
files and registry entries are properly deleted. To access the Add/Remove Programs Proper-
ties dialog box, go to the Start menu and point to Settings. Click Control Panel. Double-click
Add/Remove Programs.

• Try another PC.

Stack Pointer

Because the emulator pushes the return address on the stack, the Stack Pointer must point to valid
memory. There must be room on the stack for two bytes (or four bytes for users of chips with
larger addressable ranges) to hold the address.

CAUTION

In addition, there is a lower limit to the stack pointer. The stack pointer must have a value greater
than 0x50, or else your register contents cannot be saved correctly.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 979797

Figure 58. HSP Card LED

HSP/USB Box

Step 1. When you start Seehau, does the HSP/USB card
LED flash?

(You will need to remove the case from the HSP/USB in order to see this.)

• Yes. Go to Step 2.

• No. Make sure the power is on. Make sure the following are connected:
– HSP/USB box is connected to computer.
– Power supply is connected to HSP/USB.
– Pod is connected to the emulator board

If the HSP card LED is still not working, refer to the “Debugging the Parallel Port” section.

Step 2. If your pod has a reset LED, does it flash when you
start Seehau

• Yes. Go to Step 4.

• No. Go to Step 3.

Appendix A. TroubleshootingAppendix A. TroubleshootingAppendix A. TroubleshootingAppendix A. Troubleshooting

98989898 EMUL196–PC User Guide

Step 3. Do board I/O addresses match the values in the
Seehau configuration?

If your reset LED does not flash or your pod is not equipped with a reset LED, verify that the
board I/O addresses (for emulator and trace boards) match the values in the Seehau Configuration:

• Yes. The I/O addresses match the values:
1. From the Start menu, select Programs.

2. Select Seehau196, then click Config. If the board I/O addresses match the values in the
Seehau configuration, go to the “Configuring Address Settings with Windows Operating
Systems” section in Chapter 2. Pay specific attention to alternate addressing.

If you still encounter problems, contact Nohau Technical Support.

• No. The I/O addresses do not match the values:
1. From the Start menu, select Programs.

2. Select SeehauHC11 and click Reconfig.

3. Enter the appropriate values.

• Yes. The reset LED flashes.

Does Seehau start?

– Yes. Troubleshooting is complete!
– No. The reset LED does not flash. Contact Nohau Technical Support.

Note
We suggest that you remove the pod from the target when you do the following
steps.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 999999

Debugging the Parallel Port

Step 1. Disconnect other devices that might be sharing this parallel port (such as printers, zip,
or jazz drives, parallel CD ROM drives, or software dongle keys).

Now is it working?

• Yes. You’re done. You might opt to purchase an additional parallel port card.

• No. Do the following:

Windows NT Users

Check the Nohau196 driver status by doing the following:

• To check the status, go to the Start menu. Select Control Panel. Then double-click Devices.

– If the status shows Started, go to Step 2.
– If the status shows Stopped, check the ParPort driver for Started status.
– If the ParPort driver shows Stopped click Start.

• Now re-check the driver status.
– If the driver shows Started, try restarting Seehau.
– If the ParPort driver still shows Stopped, go to NT Diagnostics:

1. From the Start menu, select Programs.

2. Then select Administrative Tools, and click Windows NT Diagnostics. The Windows NT
Diagnostics window opens.

3. Click the Resources tab.

4. Click I/O Port. Scroll down to address 378 (LPT1) and look for a device at this address.

5. From the Control Panel, double-click Devices. Disable the device located at 378.

6. Attempt to restart Seehau. If this fails, go to Step 2.

Windows 9x Users

Check the parallel port mode. Go to Step 2.

Windows 2000 Users

Verify that the Nohau196 device driver is properly installed. Do the following:

1. From the Start menu, select Programs. Select Accessories, then click System Tools.

2. Double-click System Information. The System Information window opens (Figure 59).

Appendix A. TroubleshootingAppendix A. TroubleshootingAppendix A. TroubleshootingAppendix A. Troubleshooting

100100100100 EMUL196–PC User Guide

Figure 59. System Information Window

3. Click Software Environment.

4. Click Drivers to display a list of active drivers. Refer to the Name column and scroll down to
Nohau196 (Figure 60).

5. In the State column, verify the driver is running. In the Status column, you should see OK.

Figure 60. List of Active Drivers

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 101101101

Figure 61. System Properties Window

If the ParPort driver still shows “Stopped,” do the following:

1. Right-click the My Computer icon on your desktop, and select Properties. The System
Properties window opens (Figure 61).

2. Click the Hardware tab. Then click Device Manager. The Device Manager window opens
(Figure 62).

Figure 62. Device Manager Window

Appendix A. TroubleshootingAppendix A. TroubleshootingAppendix A. TroubleshootingAppendix A. Troubleshooting

102102102102 EMUL196–PC User Guide

Figure 63. Device Manager Window Displaying the System Resources

3. In the Device Manager window, select the View menu. Then click Resources by Type. A win-
dow appears that shows system resources (Figure 63).

4. Double-click Input/Output (I/O).

5. Scroll down to address 378 (LPT1) and look for a device at this address. Go back to the Con-
trol Panel and double-click Devices. Disable the device located at address 378. Attempt to re-
start Seehau. If this fails, proceed to Step 2.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 103103103

Step 2. Check the parallel port mode.

1. Reboot and enter BIOS setup. From BIOS setup, check for one of the following parallel port
modes:
– Normal
– Standard
– Compatible
– Output only
– Bi-directional
– AT
– PS/2

Note
There might be more or other modes listed in your computer BIOS. You might try
several before the correct mode is found. (See the following Note.)

2. Ensure that one of these modes is selected.

3. Then try selecting another mode.

4. Save your settings and reboot.

Note
The following modes have been known to cause problems: ECP, EPP, or ECP +
EPP.

Appendix A. TroubleshootingAppendix A. TroubleshootingAppendix A. TroubleshootingAppendix A. Troubleshooting

104104104104 EMUL196–PC User Guide

ISA

Step 1. Does the pod reset LED flash when you start Seehau?

• Yes. Go to Step 3.

• No. Go to Step 2.

Step 2. Do board I/O addresses match the values in the
Seehau configuration?

If your reset LED does not flash, verify that the board I/O addresses (for emulator and trace
boards) match the values in the Seehau Configuration:

• Yes. The I/O addresses match the values:

1. From the Start menu, select Programs.

2. Select Seehau196, then click Config. If the board I/O addresses match the values in the Seehau
configuration, go to the “Configuring Address Settings with Windows Operating Systems” section in
Chapter 2. Pay specific attention to alternate addressing.

If you still encounter problems, contact Nohau Technical Support.

• No. The I/O addresses do not match the values:

1. From the Start menu, select Programs.

2. Select Seehau196 and click Config.

3. Enter the appropriate values.

Now does the reset LED flash?

• Yes. The reset LED flashes.

Does Seehau start?

– Yes. Troubleshooting is complete!
– No. Seehau does not start. Go to Step 3.
– No. The reset LED does not flash. Contact Nohau Technical Support.

Step 3. Will Seehau start if you configure for test mode
after reset?

• Yes. Refer to Chapter 6, “Installing and Configuring the Pod Boards,” and Chapter 7,
“Pod Boards.”

• No. Refer to Chapter 3, “Installing and Configuring the Emulator Board,” and Chapter 4,
“Installing and Configuring the Trace Board.” Review the “Configuring Address Settings
With Windows Operating Systems” section in Chapter 2.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 105105105

Is the problem solved?
– Yes. Troubleshooting is complete!
– No. Contact Nohau Technical Support.

If the Emulator Does Not Start When Connected to the
Target System

• Make sure power is applied to the target system.

• If the target has a watchdog timer, disconnect the watchdog circuitry on your target, or re-
move JP14 on the pod. This will disconnect the reset signal going from your target to the reset
pin on the controller.

• Try switching the crystal jumpers/switches to the TARGET position.

• Disconnect the target. Make sure you change the crystal and power jumpers/switches to the
POD position. Then try restarting the Seehau software.

• Check the orientation of the target adapter. Confirm that the adapter is inserted properly. For
more information start the “View Adapter” software included on the Nohau software CD.

• Check for grounding problems. The emulator and target should have a solid common ground.
Targets that are improperly grounded or designed with a floating ground might experience
improper operation. A closer examination of control signals might reveal excessive over /
undershoot or ground noise.

• If you are able to start the emulator, the problem is with one or more of the following critical
target signals:

– address and data bus
– clock

Board I/O Addresses

Confirm that the I/O address set in the jumpers on the emulator and trace boards both agree with
the software settings found in their respective configuration dialog boxes.

Appendix A. TroubleshootingAppendix A. TroubleshootingAppendix A. TroubleshootingAppendix A. Troubleshooting

106106106106 EMUL196–PC User Guide

Emulator Configuration Utility Screen

The Seehau software is used for all EMUL196–PC products. The type of target processor in the
software configuration must agree with the type of pod you are using. If not, you might see a Fatal
Startup error message. To ensure that you do not get this error, Nohau includes a utility that you
can run when you first install the emulator, and possibly, again when you run change your pod
type. This utility is called Config. (You can also run this utility any time you want to check the
values in the initialization file.)

To invoke Config:

1. Click on the Start icon in the lower corner of your monitor. A list of options will appear.

2. Move your cursor up until Programs is highlighted. A secondary list of programs and options
will appear.

3. Move your cursor until you highlight Seehau 196. Another list will appear.

4. Move your cursor over the Config option and click on it. The Emulator Configuration (Com-
munications) dialog box opens.

5. Select your method of connection (HSP, ISA, LC-ISA or USB).

6. Click on the picture that represents your equipment.

7. Click Next after each selection. After the last selection on the first dialog box, the Hdw Config
dialog box opens.

8. Make the appropriate selection on the options you want.

9. When you are finished selecting your options, select Finish.

You are now ready to run your program with the options you selected and the emulator will start.

You can also start this procedure by clicking on the Seehau196 icon on your desktop and follow-
ing the same procedure from the first frame of the Emulator Configuration dialog box. (This
method will require you to delete the file Startup.bas first.)

PWR and XTAL Jumpers

If there is a power supply on the target, remove the PWR jumper from the pod. If the crystal or
oscillator on the target is running at a different frequency than the one on the pod board, move the
XTAL jumpers to the target position.

For more information, see the section in Chapter 7, “Pod Boards” that describes the kind of pod
you have.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 107107107

I/O on Address Pins

Most 8xC196 parts use 16 address bits. In those parts that support more address bits, the target can
use from 0 to 4 of the extra address bits for I/O instead. The following table shows for each com-
bination of address pins used for addressing, how to set the jumpers. Make sure the jumpers on
your pod match the settings in the row that applies to your target.

Bits Used for Addressing TRA16 TRA17 TRA18 TRA19

A0 – A15 GND GND GND GND

A0 – A16 EA16 GND GND GND

A0 – A17 EA16 EA17 GND GND

A0 – A18 EA16 EA17 EA18 GND

A0 – A19 EA16 EA17 EA18 EA19

Chip Configuration Bytes (CCBs)

The CCBs that you specify in the hardware configuration menu must match what the microcon-
troller reads from location 2018 at Reset. If you mapped 2018 to a target with EPROM that con-
tains CCBs specifying 8-bit mode while your hardware configuration menu specifies 16-bit mode,
you will run into trouble.

Note
CCBs on NT/NP/NU pods running in big mode are fetched at FF2018.

Enough Memory

A POD196–256-xx has only 256K of breakpoint and mapping memory in parallel with 256K of
emulation memory. That means that you only have four pages to use. If you have pages that over-
lap because of this, you should order a 1-Mb pod. If you access physical memory at address
5000H, it will also show on three other pages: 45000H, 85000H and C5000H.

The Stack Pointer

The Stack Pointer must point to valid, even-memory location at all times. The emulator needs
either two bytes or four bytes of temporary storage on the stack. See the “Features Common to All
Pods” secton at the beginning of Chapter 6 for more information.

Because the emulator pushes the return address on the stack, the Stack Pointer must point to valid,
even-memory location at all times. There must be room on the stack for two bytes (or four bytes
for users of chips with larger addressable ranges) to hold the address.

Appendix A. TroubleshootingAppendix A. TroubleshootingAppendix A. TroubleshootingAppendix A. Troubleshooting

108108108108 EMUL196–PC User Guide

CAUTION

In addition, there is a lower limit to the stack pointer. The stack pointer must have a value greater
than 0x50, or else your register contents cannot be saved correctly.

Interrupt Vectors
Support for software breakpoints requires specific values for certain interrupt vectors. When trou-
bleshooting target systems that use 16 bits of addressing, confirm that the following addresses
have the following values:

Address 0x0018 0x2010 0x2012

Value 0x0000 0x0019 0x0019

When troubleshooting a target design that uses a processor with 20 bits of addressing like the
8xC196NP or 8xC196NT, add an address offset of 0xF0000 to each of the above addresses to
locate the interrupt vectors:

Address 0xF0018 0xF2010 0xF2012

Value 0x0000 0x0019 0x0019

If you map these addresses to the target ROM, be sure your ROM contains these values at those
addresses. If it does not, software breakpoints will not work.

Nonmaskable Interrupt (NMI) Pin (KR/NT only)
When using the POD196–KR/NT without a target connected, you can connect the NMI pin to
ground to prevent spurious nonmaskable interrupts. The simplest way to do this is to connect the
ground micro-clip from the pod to the pin marked NMI on the pod. If your target does not use the
NMI pin, you should still ground the NMI pin on the pod.

Note
The KR/NT pod leaves the NMI pin floating.

Buswidth (CA/CB only)
If you have trouble running with 8-bit mode accessing code RAM or running with the EA pin
high, set the Bus Width: field in the Hardware Configuration dialog box to Dynamic. This will up-
date the CCB registers and allow the processor to use either a 16-bit or an 8-bit buswidth. You can
then force the processor to use an 8-bit bus by grounding the BW pin. (You can ground the BW
pin by putting two jumpers in two locations on one header: BW and GND on the BUSWIDTH
header.)

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 109109109

Note
Do not ground the BW pin when the pod is connected to a design that pulls the BW
pin high.

Single-Chip Mode

If you are using a PRU and intend to run in Single-chip mode (no external memory access), the
user interface must have no data windows open at external addresses or the software will require
the pod to use external memory access.

Sample User Program

If you telephone Nohau’s Technical Support team, you will probably be asked to enter a sample
user program:

1. Click the cursor in the Program window

2. Press CTRL –A

3. Insert 2080

4. Press ENTER

5. Type the following:

6. NOP then press ENTER

7. NOP then press ENTER

8. LJMP 2080 then press ENTER

9. Click on the GO button in the toolbar

10. Click on BREAK.

Appendix A. TroubleshootingAppendix A. TroubleshootingAppendix A. TroubleshootingAppendix A. Troubleshooting

110110110110 EMUL196–PC User Guide

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 111111111

Appendix B. ISO–160

333129272523N
C

1 2 3 4 5 6 7

ON

ON

2.95 in.
74 m

m
.

2.435 in.
63 mm.

1 2 3 4 5 6 7

34323028262422

333129272523N
C

34323028262422

0.3 in.
7 mm.

Side View Top View

Figure 64. PLCC–52–ISO

PLCC–52–ISO

Sometimes, isolating a target board signal from the pod board helps to identify a target board
problem. Using a 52-pin or 68-pin isolator suitable for the 8xC196JR or 8xC196 is a way of
isolating these problems. Some of these PLCC isolators bring every signal out to wire-wrap pins
so that any signal can be first isolated then redirected to any other pin. Simply insert the PLCC
isolator into the PLCC socket on the target board and plug the PLCC adapter into the top of the
isolator.

EMUL196/ISO-160

ISO–160 is a set of four parts that, when used together, can be useful with targets that have an
external watchdog timer, or other externally generated signals that interfere with emulation. The
ISO–160 can be used with any pod and with any kind of adapter. Inserting four of these isolators
between the pod and the adapter (between the controller and the target) inserts 160 DIP switches,
each dedicated to one signal, so any single signal or any combination of signals from the target
board can be interrupted before they reach the controller.

Appendix B. ISO–160Appendix B. ISO–160Appendix B. ISO–160Appendix B. ISO–160

112112112112 EMUL196–PC User Guide

N
O

H
AU

 C
O

R
P

IS
O

-1
60

21 3 4 5 6 7 8 9 10 21 3 4 5 6 7 8 9 10

21 3 4 5 6 7 8 9 1021 3 4 5 6 7 8 9 10

OPENOPEN

OPEN OPEN

2.19 in.
56 mm

2.00 in.
49 mm

Figure 65. ISO–160, One Part of Four

Each isolator is designed with enough switches to support as many as 40 signals. A set of four can
disable any combination of 160 signals. This means that there are more pins and sockets on the
isolator than on some pod boards and adapters. In this case, install the isolator so that the excess
pins all extend to the right of the header and the right of the pins on the pod. In other words, the
pins near the ISO–160 label should be the unused pins.

This adapter is good for isolating chip-select lines needed for emulation RAM from the target
board. Flip the switch for the offending chip select signal. Clip or solder a pull up resistor to the
target side of the switch, and the target device will be isolated from the controller with no trace
cutting or pad lifting. No target hardware modifications are required.

Note
By interrupting an input signal to the controller, an open switch can create a floating
input signal to the controller. If no pull-up or pull-down resistor is used to give the in-
put a definite state, the controller can behave unexpectedly.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 113113113

.34 in.
8 mm

1.72 in.
44 mm

Figure 66. Samtec SSQ–117–03–GD

SAMTEC/SSQ–117–03–GD

The SSQ–117–03–GD is a header/pin combination that when used in sets of four, raises the pod
above the target board. This is especially useful when debugging targets installed in boxes or in
places where there is not enough free space around the target for the pod. This accessory only has
enough pins to support the 132-pin pods. Contact Nohau Technical Support if you need support for
chips with more than 132 pins.

Appendix B. ISO–160Appendix B. ISO–160Appendix B. ISO–160Appendix B. ISO–160

114114114114 EMUL196–PC User Guide

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 115115115

Appendix C. Compilers

Overview

In general, the Seehau software will accept a hex file or the absolute file from the linker. The
hex file will contain only hex information in Intel hex format, and not include any symbolic
information. The absolute file from the linker will contain both the hex information and the
symbolic information.

There are two software packages currently supported by the Seehau 196 software:

• Tasking
• IAR.

Refer to the appropriate sections in this guide for specific information.

Tasking

Compiler Notes

Like the assembler, the debug switch produces all the symbols needed by the debugger and puts
them in the unlinked object file. Set all other switches to match your target. For more information
about other compiler command line settings, refer to the manual from Tasking. If the default is
used within the compiler and linker, the output file to be loaded into Seehau 196 will have a .omf
extension. This file will contain both the hex and symbolic information.

Assembler Notes

To do source level debugging, add two switches when assembling your code:

• debug
• source

Note
This applies only if you have V4.0, Rev. 3 or later of the Tasking assembler.
Previous versions did not support this feature.

A typical command follows:
asm196 cstart.asm md(nt) farcode debug source

Set all other switches to match your target. For more information about other assembler settings,
refer to the Tasking manual.

Appendix C. CompilersAppendix C. CompilersAppendix C. CompilersAppendix C. Compilers

116116116116 EMUL196–PC User Guide

The example files on the release disk include a file called Cstart.asm. For simplicity, use that file
instead of any of the startup example files shipped with the compiler when compiling examples.

Note
To get line number/source information from Tasking V4.0, use the source switch.

IAR

Seehau 196 will only support the hex or UBROF format from this package. The UBROF forma-
tion will contain both the hex information and the symbolic information. Other formats should not
be selected, as they will cause problems when trying to view symbols.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 117117117

Appendix D. Emulator / Trace Address
Examples

Figure 67. Pin Addressing 100 Hex Range

Appendix D. Emulator / Trace Address ExamplesAppendix D. Emulator / Trace Address ExamplesAppendix D. Emulator / Trace Address ExamplesAppendix D. Emulator / Trace Address Examples

118118118118 EMUL196–PC User Guide

Figure 68. Pin Addressing 200 Hex Range

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 119119119

Figure 69. Pin Addressing 300 Hex Range

Appendix D. Emulator / Trace Address ExamplesAppendix D. Emulator / Trace Address ExamplesAppendix D. Emulator / Trace Address ExamplesAppendix D. Emulator / Trace Address Examples

120120120120 EMUL196–PC User Guide

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © Nohau Corporation 121121121121

Appendix E. Discontinued Pod Boards

This appendix is provided for those of you who already own one of the following pod boards:

• POD196–CA/CB

• POD196–EA

• POD–196LC–KR/NT

If you have, any questions concerning these pod boards, contact Nohau Technical Support at
support@nohau.com.

POD196–CA / CB

Overview

This pod board contains an Intel 80C196 bondout microcontroller chip (suitable for emulating
the Intel 8xC196CA or the 8xC196CB). This is a 16-or 20-MHz crystal, with 256K of emulation
RAM for instructions and data, circuits for driving the cable bus, two flash PROMs, and two large
FPGA chips.

NOHAU CORP. POD196-CA/CB

TP1

TA
R

G
ET

\P
O

D

JP
10

XJP3

PW
R

TRACE JP1 S/N

J1

EA19
EA17
AD15
AD13
AD11
AD9
GND
AD7
AD5
AD3

EA18
EA16
AD14
AD12
AD10

AD8
TVCC

AD6
AD4

AD
2

AD
0

N
M

I

TV
C

C
R

XD
I
N
T
B

H
L
D

C
LK

AC
H

1

AD
I

R
S
T

E
A

G
N

D
TX

D
EI

N
T

I
N
T
0

H
L
D
A

AC
H

0
AC

H
2

JP7
B
H
E

AD
20

AD
22

VP
P

AL
E

R
D

Y
G

N
D

X2 SC
I

SC
O

W
R R
D

AD
21

AD
23

G
N

D
IN

ST
P5

.4 X1 SD
I

SD
O

GND

JP
8A

JP
13

JP
14

JP
15

JP
16

JP
18

JP
19

JP
20

JP
22

M
_I

N
S

EA
16

G
N

D

PO
R

T
BW G
N

D
VC

C

EA
17

\G
N

D

EA
18

\G
N

D

EA
19

\G
N

D

RST H
LD

EXD0
EPA9
EPA0
EPA2
EPA4
EPA6
VREF
AGND
ACH6
ACH4

EXCO
EPA8
EPA1
EPA3
EPA5
EPA7

ACH7
ACH5
ACH3

TA
R

G
ET

\P
O

D

Rev B

HALT RESET RUN USER 70

GND/TXD/RXD

JP5JP6\TRA16 JP
12

\T
R

A1
7

JP
17

\T
R

A1
8

JP
21

\T
R

A1
9

BUSWIDTH

R
XD

BRK_OUT BRK_IN

Figure 70. POD196–CA / CB (Rev. B)

Appendix E. Discontinued 196 Pod BoardsAppendix E. Discontinued 196 Pod BoardsAppendix E. Discontinued 196 Pod BoardsAppendix E. Discontinued 196 Pod Boards

122122122122 EMUL196–PC User Guide

POD196–CA / CB

0.1 in. 0.1 in.

0.1 in.
0.1 in.

 1
.8

0
in

.
45

.7
 m

m

 1.80 in.
45.7 mm

 3
.8

1
in

.
96

 m
m

 4.63 in.
118 mm

Figure 71. POD196–CA / CB Footprint Dimentions

Dimensions

The pod board itself is six inches by four inches (15.3 cm. by 10.3 cm). The pod requires between
one and two inches (2.5 cm to 5 cm) of space above the target, depending upon which adapter is
being used to connect the pod to the target.

Emulation Memory

The 8xC196CA with 16 address bits can only directly address 64K of memory. Some target de-
signs use one 64K bank for instructions and one for data using the INST signal.

Controllers like the 8xC196CB, with 20 address bits, can address 1 MB.

INST

For more information on this feature, contact Nohau Technical Support at support@nohau.com or
see the INST section in this manual.

Port Replacement Unit (PRU)

A PRU is a hardware device that uses logic to allow the pod controller to have the bus control sig-
nals it needs while also allowing the applications to behave as though it has exclusive use of the
shared pins. It fits between the pod and the Nohau adapters. The PRU will support Ports 3, 4 and 5
for low speed I/O. If, you want to do port reconstruction, use a PRU.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 123123123

POD196–CA / CB

Nonmaskable Interrupt (NMI) Pin

On the CA/CB pod, the NMI line has a 100K Ohm resistor connected to ground to ensure proper
function in stand-alone mode.

Headers and Jumpers

Pods are usually delivered with jumpers in their factory default position. Most headers apply to all
the processors supported by this pod. Some headers only apply to controllers with 20 address bits.
When shipped from the factory, all jumpers are in place for stand-alone operation (without target)
and 16 bits of addressing (see Figure 72). When you connect any pod to a target, examine all
jumpers and make sure that they are all correctly placed.

ClockClockClockClock

These two headers each have two jumper positions: TARGET and POD. When set in the
TARGET position, the pod controller receives the clock signal from the target crystal. With both
in the POD position, the controller uses the crystal on the pod.

Note
When the clock jumpers are in the pod position, the XTAL signals from the pod are
disconnected from the target.

In ONCE mode, (only while using a clip-over adapter), all the target controller pins are tri-stated
except the oscillator pins. Because there is no way to disconnect the target crystal from the target
controller, the target crystal remains an active part of the clock circuit even when the jumpers are
moved to the POD position. Where the two oscillators are running at the same frequency, they
synchronize naturally. The presence of two oscillators does not affect how the application runs. If
they are different frequencies, you probably want to put both jumpers in the TARGET position and
use just the target oscillator.

JP
13

JP
14

JP
15

JP
16

JP
18

JP
19

JP
20

JP
22

M
_I

N
S

EA
16

G
N

D

PO
R

T
BW VC

C
G

N
D

EA
17

\G
N

D

EA
18

\G
N

D

EA
19

\G
N

D

RST H
LDJP5 JP6\TRA16 JP

12
\T

RA
17

JP
17

\T
RA

18

JP
21

\T
RA

19

BUSWIDTH

R
XD

Figure 72. Header for Controller With 16 Address Bits

Appendix E. Discontinued 196 Pod BoardsAppendix E. Discontinued 196 Pod BoardsAppendix E. Discontinued 196 Pod BoardsAppendix E. Discontinued 196 Pod Boards

124124124124 EMUL196–PC User Guide

POD196–CA / CB

PWRPWRPWRPWR

Remove this jumper when the target has its own power supply. When this jumper is in place, the
target can get Vcc from the pod as long as the current requirement is less than 0.5 amps. Higher
currents cause a significant voltage drop along the current path and the pod can be damaged.

Note
The pod is specified to run at a nominal 5V +/- 5%, or from 4.75V to 5.25V. At volt-
ages less than 4.70V, and at frequencies greater than 20 MHz, interrupts that occur
near the falling edge of CLOCKOUT might not be recognized. If you have removed
the PWR jumper and are using an external power supply, be sure the supply pro-
vides power within 5 percent of 5V.

RXD/TXD/GNDRXD/TXD/GNDRXD/TXD/GNDRXD/TXD/GND

On all of the 196 pods there are three pins labeled RXD/TXD/GND. This allows receive (RXD),
transmit (TXD), and ground (GND) signals for the 196 processor.

If your target outputs debugging information on the serial port, you might want to connect an
RS232 device like a terminal or a PC. The terminal is connected via clips or wires from these pins
to the terminal (input/receive, output/send, and ground).

This pod includes a MAX232 chip to convert the signal levels from RS232 to TTL levels. Whether
or not you connect the RXD on J1 to an RS232 device, the MAX232 chip will drive the serial port
input pin on the controller. However, if P2.1 is used for low speed I/O, then JP13 should be re-
moved. To allow the MAX232 chip to drive the serial port input pin, place a jumper on this
header.

The TXD pin gives the user the option of transmitting signals (output) to a terminal and a target
simultaneously. The RXD signal on the other hand can only receive a signal (input) from one
source at a time. The following diagram shows how this functions.

Figure 73. Data Flow To and From the Target and the MAX232 Chip

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 125125125

POD196–CA / CB

 WARNING

The processor cannot handle input from two different sources at the same time. If you are con-
nected to a terminal, through the MAX232 chip you must be in stand-alone mode (not connected to
a target). If you are connected to a target, the RXD jumper on JP13 must be removed, so you are
not connected to a terminal and a target at the same time.

RSTRSTRSTRST

Occasionally, a target might contain an external device designed to reset the controller by pulling
the /RST pin low (i.e., a watchdog timer). The signal from the target /RST pin passes through
the RST header. Removing the RST jumper prevents the external device from resetting the pod
controller.

HLDHLDHLDHLD

The target /HLD signal passes through the HLD header. Removing this jumper will prevent the
pod controller from receiving the Hold Request from a target device.

BUSWIDTHBUSWIDTHBUSWIDTHBUSWIDTH

This header controls the signal sent to the FLEX logic chips. The bondout chip does not correctly
assert the bus control signals when the CCBs are set to have an 8-bit wide bus. If you need to
emulate an 8-bit bus, you can do so reliably by setting the CCBs to have a dynamic buswidth and
adding a jumper to this header in the GND position. Have two jumpers on this header, one in the
BW position and one in the GND position.

Note
The pair of pins on the BUSWIDTH header with the PORT label is reserved for a
feature not yet implemented. Do not place the jumper on this pair of pins.

 WARNING

Whether you pull the BW pin high or low, make sure that the jumper settings agree with your target
hardware design. If they are different, you can damage the pod, the target, or both. It is recom-
mended that you leave the Vcc and GND jumpers off when you are plugged into the target. This
will allow the target to control the BW pin.

Appendix E. Discontinued 196 Pod BoardsAppendix E. Discontinued 196 Pod BoardsAppendix E. Discontinued 196 Pod BoardsAppendix E. Discontinued 196 Pod Boards

126126126126 EMUL196–PC User Guide

POD196–CA / CB

EA16-EA19EA16-EA19EA16-EA19EA16-EA19

The jumpers on these headers must remain in their default or grounded positions for all controllers
that use 16 address bits. Controllers like the 8xC196CB have 20 address bits and you will likely
need to change these jumpers.

Each of these jumpers sits between the controller and the address signals going to the emulator and
trace boards. These address signals are used to correctly locate write cycles in Shadow RAM and
trace records of all kinds in the trace buffer.

If your application uses a controller with 20 address bits, for every address bit above 15 that the
application uses for addressing, move the corresponding jumper from the GND position to the
EA1x position. This will pass that address signal on to the emulator and trace boards. For each
of the bits that are used for I/O instead of addressing, put the jumper on the GND side. This also,
applies to JP/TRA16 although it has a different geometry than the other headers.

 WARNING

Do not put more than one jumper on EA16, also labeled JP6. Having two jumpers on this header
can damage the bondout controller or some other part of the pod.

87C196CB Bondout Errata

PRU with /#EA Pin HighPRU with /#EA Pin HighPRU with /#EA Pin HighPRU with /#EA Pin High
The POD196–256–CA/CB, Rev. B, in a limited way, supports single chip customers using the
PRU with the /#EA pin high. The CA device has a 32K internal EPROM/OTP. The CB device
has a 56K internal EPROM/OTP. The POD196–256–CA/CB, Rev. B uses the 8xC196CB bond-
out chip which has 48K, resulting in the following restrictions when using a PRU:

• CA device users cannot access external peripherals between A000 and DFFF with the PRU
attached.

• CB device users cannot correctly support 56K-code emulation in single chip mode. Therefore,
if code executes between E000 and FFFF or FE000 and FFFFF, accesses will go external and
corrupt the low speed I/O pins used on Port 3 and Port 4.

Extended Addressing BugsExtended Addressing BugsExtended Addressing BugsExtended Addressing Bugs

The POD196–256–CA/CB, Rev. B 8xC196CB bondout has a number of extended addressing
bugs. These bugs do not appear on the 87C196CB component. They will be fixed on a subsequent
stepping of the 8xC196CB-bondout silicon. Therefore, the 87C196CB emulator will behave dif-
ferently than the 87C196CB component. Following is a list of these bugs and their suggested soft-
ware workarounds:

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 127127127

POD196–CA / CB

• EST/ELD Base-Indexed Addressing Mode Bug

• EST/ELD Indirect Addressing Mode Bug

• Aborted Interrupt Vectors to Lowest Priority Bug

• PTS Request During Interrupt latency Bug

• ILLEGAL Opcode Interrupt Vector Bug

• SJMP/Conditional Jumps Near Page Boundary

• EBR Dummy Prefetch Anomaly

The following section explains in detail the above noted workarounds:

BUG 1:EST/ELD Base-Indexed Addressing Mode

When executing from external memory, the EST/ELD instructions in base-indexed addressing
mode do not access the correct memory locations.

The following text explains how extended base-indexed addressing should work:
ELD destination_16bit, base_address_24bit [index_32bit]

After the above instruction is executed, the destination register contains the data at the effective
address.
destination_16bit <= [base_address24bit+index_32bit]

Note
 [] => the contents of

The effective address is calculated by the MICROCODE engine within the device.
effective_address = base_address + index

An example of an extended base-indexed load instruction is shown below, let:

Register 20H = 0000 0002H (32 bit value)

Register 1CH = 000H (16-bit value)

The word at location 000602H contains 1234H

The word at location 020602H contains 5678H

ELD 1CH,000600H[20H] ; executing from somewhere in
 ; EXTERNAL MEMORY

Appendix E. Discontinued 196 Pod BoardsAppendix E. Discontinued 196 Pod BoardsAppendix E. Discontinued 196 Pod BoardsAppendix E. Discontinued 196 Pod Boards

128128128128 EMUL196–PC User Guide

POD196–CA / CB

The base address 000600H is added to the 32-bit register 20H to obtain the effective address, so:

Equation 1: Effective Address Calculations
Base address 000600H term A
Register 20H +00000002H term B

 000602H

Therefore:

1CH should contain the value at location 000602H
1CH should contain 1234H

However, with the 8xC196CB bondout, register 1CH contains 5678H after the above instruction is
executed. 1CH is being loaded with the value at location 020602H.

Therefore, the 8xC196CB bondout is performing the add incorrectly (see Equation 1). The 24-bit
add is limited by the 16-bit internal buswidth. Since the internal bus is 16 bits wide, two adds need
to be done to achieve a 24-bit add. When the first add is done:

Base address 0600H term A
Register 20H 0002H term B

0602H

Term B is left on the bus for the second 16-bit add, so:

Base address 00H term A
Register 20H 0002H term B (left over from first add)

 02H

The incorrect calculation leads to an incorrect effective address: 020602H.

A: Assembly Language Workaround
If programming in assembly language, be aware of the bug and avoid using the extended base-
indexed instruction. One workaround would be to replace the following extended base-indexed
instruction:
ELD 1CH, 000600H [20H]

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 129129129

POD196–CA / CB

With the following:
;**
rseg at 20H
effective_address: dsl 1 ; 32-bit long word register
base_address: dsl 1 ; 32-bit long word register
index: dsl 1 ; 32-bit long word register

; only 24 bits needed for
; address

clr effective_address ; zero out long words
clr effective_address+2
clr base_address
clr base_address+2
clr index
clr index+2
add effective_address, base_address, index

; add lower words of index
; and base address

addcb effective_address+2, index+2
; add upper byte from index to
; upper byte of effective
; address resulting in a 24-bit
; add

ELD 1CH, [effective_address] ; straight indirect addressing
; works correctly

;**

B: C Compiler Workarounds

Recommendation 1: Limit Data Space to 64K

The bug can be avoided if you declare all data access to be within page 00H (64K page). This can
be accomplished with the C compiler directive called NEAR. At the top of the C source code,
place the following directives:
#PRAGMA FARCODE
#PRAGMA NEARDATA

The FARCODE directive tells the compiler to use extended branching instructions (i.e. ECALL,
EJMP) to reference any address within the 1-MB space. The NEARDATA directive tells the com-
piler that ALL data references will be within page 00H (000000H – 00FFFFH). Hence, the com-
piler will just use the nonextended load and store instructions (i.e. LD, ST).

Disadvantage

This (NEARDATA) limits any access to page 00H. Therefore, the user will only have 64K of data
space. However, program space can extend the entire 1-MB of address space (FARCODE).

Appendix E. Discontinued 196 Pod BoardsAppendix E. Discontinued 196 Pod BoardsAppendix E. Discontinued 196 Pod BoardsAppendix E. Discontinued 196 Pod Boards

130130130130 EMUL196–PC User Guide

POD196–CA / CB

Recommendation 2: Limit Code Space to 9 INTERNAL Memory

Limit code accesses to just the internal (EP) ROM (page FFH). The bug does not exist when exe-
cuting from internal memory. The C compiler directives are:
#PRAGMA NEARCODE
#PRAGMA FARDATA

The NEARCODE directive tells the compiler that all code branches will reside within page FFH
(FF0000H – FFFFFFH). The FARDATA directive tells the compiler that data accesses can be
anywhere within the 1-MB address space. Therefore, the compiler will use extended load and store
instructions. (But the extended base-indexed instruction will work since all the code is executing
internally.)

Disadvantage

Code, which accesses FARDATA, is limited to 32K (internal EPROM size). Glossary of
C Compiler Terms:

• NEAR—constraints, data or code within page 00H (000000H through 00FFFFH). Examples:
NEARCONST, NEARDATA, and NEARCODE

• FAR—constants, data or code that lie anywhere within 1-MB address range (000000H
through FFFFFFH)

BUG 2: EST/ELD Indirect Addressing Mode

The ELD/EST instructions in indirect addressing with auto-increment mode do not increment over
the 64K page. This bug does not exist on the CB silicon.

Example

;**
 ld temp,#0FFFCH
 ld temp+2,#02H; upper word equal to 0002H
 eld value,[temp]+; after this instruction
 ; temp=0002FFFEH
 eld value, [temp]+; after this instruction
 ; temp=00030000H
 end
;**

Temp should contain 00030000H after the last auto-increment statement.

ERROR

Instead, temp contains 03020000H after the last auto-increment statement. Therefore, the bug is
that the upper byte in the 32-bit long word is being loaded with the incremented 64K page value
(03H in this case). What should happen is that the lower word rolls over to 0000H (as it does). In
addition, the upper word should increment to 0003H (as it does).

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 131131131

POD196–CA / CB

Workaround

The workaround for this auto-increment bug is to do the incrementing with ADD and ADDC
statements on the index register (in this case, temp). To fix the code above, use the following
workaround code:

;***
 ld temp,#0FFFF\CH
 ld temp+2,#0002H
 eld lch, [temp] ; get word from 0002FFFCH
 add temp,#2 ; increment by 1
 addc temp+2#0 ; add in carry to the upper

 ; word or page value
 eld lch, [temp] ; get word from 0002FFFEH
 add temp,#1
 addc temp+2,#0
 eld lch, [temp] ; get word from 00030000H
;***

BUG 3: Aborted Interrupt Vectors to Lowest Priority

In 24-bit mode, if an interrupt is aborted either intentionally or unintentionally, an undesired
branch to the lowest priority interrupt vector (FF2000H) can occur even if the lowest priority inter-
rupt is not enabled. This can occur if any bit in the INT_MASK, INT_MASK1, INT_PEND, or
INT_PEND1 register is cleared after the corresponding INT_PEND or INT_PEND1 bit is set.

Example

If the EXTINT0 interrupt is enabled by setting INT_MASK3, and a rising edge on EXTINT0 oc-
curs \,INT_PEND.3 is set. The following instruction might cause the CPU to vector to 0FF2000H
instead of 0FF2006H.
ANDB INT_MASK,#0F7H; masks EXTINT0

Workaround

If a disable interrupt (DI) instruction is used prior to clearing a bit in the INT_MASK,
INT_MASK1, INT_PEND, or INT_PEND1, the problem will be avoided. The following code ex-
ample demonstrates how to safely disable the EXTINT0 interrupt.
DI
ANDB INT_MASK, #0F7H
EI

An undesired branch to the lowest priority interrupt can occur if an interrupt is aborted, unless the
workaround is used.

Appendix E. Discontinued 196 Pod BoardsAppendix E. Discontinued 196 Pod BoardsAppendix E. Discontinued 196 Pod BoardsAppendix E. Discontinued 196 Pod Boards

132132132132 EMUL196–PC User Guide

POD196–CA / CB

BUG 4: PTS Request During interrupt Latency

In 24-bit mode, if a standard interrupt occurs at approximately the same time as a PTS serviced
interrupt, the PTS interrupt can be processed as a standard interrupt. The standard interrupt service
routine for PTS serviced interrupt (usually referred to as the End-of-PTS) is typically used to
modify the PTS control block and enable the PTS by setting the corresponding bit in the PTSSEL
register. When this occurs, the End-of-PTS service routine will execute regardless of the value in
PTSCOUNT. Therefore, an undetermined number of PTS cycles will not occur. This bug applies
to all interrupts serviced by the PTS.

Workaround

In the standard interrupt service routine (End-of-PTS) for each PTS enabled, the first instruction
following a PUSHA should determine if the associated bit in the PTSSEL register is set or
cleared. Checking this bit will determine if the desired number of cycles were completed or a pre-
mature End-of-PTS occurred. If the bit is set, the associated pending bit in the INT_PEND or
INT_PEND1 should be set followed by a RET statement. This will cause a PTS cycle to occur. If
the associated bit in the PTSSEL register is cleared, the normal End-of-PTS procedure should be
executed. The following is an example of a End-of-PTS service routine for the External Interrupt 0
(EXTINT0).
CSEG AT 0FF2006H
DCW EXTINT0_END_OF_PTS

BUG 5: ILLEGAL Opcode Interrupt Vector

The ILLEGAL opcode interrupt should be generated when there is an attempt to execute an unde-
fined opcode in the 196 core and should vector to address FF2012H to handle the interrupt. How-
ever, in 24-bit mode, the vector address for the illegal opcode interrupt will not be generated
correctly, and a random vector address will be generated.

Workaround

Use a C-compiler or assembler that will flag the ILLEGAL opcode or put a RESET opcode, FFH,
at the end of any data tables or unused memory locations.

There are only two ILLEGAL opcodes (10H and E5H) out of 256 opcodes. So if your code
accidentally jumps into a data table, there is only a 0.8 per cent chance that one of the two
illegal opcodes will be found.

BUG 6: SJMP / Conditional Jumps Near Page Boundary

In 24-bit mode, the execution of a SJMP instruction with a negative offset occurring near a page
boundary will result in the device jumping to an incorrect page address. The upper bits of the
address are corrupted during the jump and will contain the address of the preceding page. This
behavior is also exhibited during the execution of conditional jump instructions.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 133133133

POD196–CA / CB

Software Workaround

This described behavior of the SJMP and Conditional Jump instructions occurs only in 24-bit
mode when the specific instruction is executed near a page boundary. In order to prevent this be-
havior, the programmer must insure that these instructions are not executed near a page boundary.
This can be accomplished by placing several NOP instructions at the top of all 64K pages, which
are used for code execution.

BUG 6: Extended Branch Indirect (EBR) Dummy Prefetch Anomaly

In 24-bit mode, the execution of an EBR instruction near a page boundary will result in an extra
code prefetch to a dummy address. This extra prefetch can occur anywhere within the next page.
Since this additional prefetch occurs when the Instruction Queue (IQ) is being flushed, the pre-
fetched code is not loaded into the IQ registers, and therefore is not executed. Currently, no plans
exist to fix this anomaly.

Software Workaround

This described behavior of the EBR instruction only occurs when the EBR instruction occurs near
a page boundary. To prevent this behavior, the programmer must ensure the EBR instruction does
not occur near a page boundary. This can be accomplished by placing several NOP instructions at
the top of all 64K pages, which are used for code execution.

Appendix E. Discontinued 196 Pod BoardsAppendix E. Discontinued 196 Pod BoardsAppendix E. Discontinued 196 Pod BoardsAppendix E. Discontinued 196 Pod Boards

134134134134 EMUL196–PC User Guide

POD196–EA

Overview

This pod board contains an Intel 80C196 bondout microcontroller chip (suitable for emulating the
Intel 8xC196EA). This pod has a 32-MHz crystal, with up to 2 MB of emulation RAM for instruc-
tions and/or data, circuits for driving the cable bus, two flash PROMs, and two FPGA chips. If
Ports 3, 4, 5 and 12 are used for low speed I/O, a PRU is required. For this 32-MHz pod, use a 40-
MHz or faster emulator board and trace board.

Dimensions

The pod board itself is six and one-half inches by four inches (16.6 cm. by 10.3 cm). The pod
requires between one and two inches (2.5 cm to 5 cm) of space above the target, depending upon
which adapter is being used to connect the pod to the target.

R
S

T

Figure 74. POD196–EA

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 135135135

POD196–EA

0.15 in.

2.20 in.

2.40 in.

2.40 in.
2.20 in.

0.15 in.

Figure 75. POD196–EA Footprint Dimensions

Emulation Memory

This pod comes standard with 256K of high-speed static RAM for emulating ROM or target RAM.
Controllers like the 8xC196–EA with 21 bits of address can address up to 2 MB of RAM.

The 256K of memory for POD196–256–EA is located at pages 1C to 1F. Code RAM at
000400H – 000FFFH shares the same memory on the pod as 1C0400H – 1C0FFFH. Therefore,
when compiling code, which executes out of page 1C on the pod, it is important to exclude this
area in your link file.

Note
If you have RAM/ROM in your target at page 1C and you map this page to
target, you will not need to make an exclusion in your link file. This is because
the code RAM at 000400H – 000FFFH will go to on-pod memory, and access to
1C0400 – 1C0FFF will go to target.

If a 1-MB pod is used, the link file must exclude 100400H – 100FFF whenever
this range is mapped to the pod. There are no memory limitations when using a
2-MB pod.

Addressing RAM

For the 256K EA pods, RAM at addresses 1C0400 to 1C0FFF is mapped to emulator, it duplicates
RAM at address 000400 to 000FFF. For the 1-MB EA pods, RAM at address 100400 to 100FFF is
mapped to emulator; it duplicates RAM at addresses 000400 to 000FFF. For the 2-MB EA pods,
RAM is not duplicated.

Appendix E. Discontinued 196 Pod BoardsAppendix E. Discontinued 196 Pod BoardsAppendix E. Discontinued 196 Pod BoardsAppendix E. Discontinued 196 Pod Boards

136136136136 EMUL196–PC User Guide

POD196–EA

8-Bit Mode and BHE Mode

If your target is 8-bit, it is required that the WRH/BHE pin be configured as BHE mode. Not doing
so will cause the emulator to fail.

Headers and Jumpers

Pod boards are usually delivered with jumpers in their factory default position. Most headers apply
to all the processors supported by this pod. When shipped from the factory, all jumpers are in
place for stand-alone operation. When you connect any pod to a target, examine all jumpers and
make sure that they are all correctly placed.

Clock Jumper (JP7, JP10)Clock Jumper (JP7, JP10)Clock Jumper (JP7, JP10)Clock Jumper (JP7, JP10)

These two headers each have two jumper positions: TARGET and POD. They must be moved as a
pair. When set in the TARGET position, the pod controller receives the clock signal from the tar-
get crystal. With both in the POD position, the controller uses the crystal on the pod.

Note
When these jumpers are in the POD position, the XTAL signals from the pod are
completely disconnected from the target.

PLLEN (JP47)PLLEN (JP47)PLLEN (JP47)PLLEN (JP47)

Install this jumper to connect target PLLEN to the bondout. The default position is with JP47
installed.

Code RAM (JP49)Code RAM (JP49)Code RAM (JP49)Code RAM (JP49)

The 196–EA chip has a separate Vcc pin used to power the internal code RAM. Pin 66 is powered
by the user’s target supply. If the target supply is turned off, then the internal code RAM will be
lost unless Pin 66 remains at +5V. This jumper should only be installed if you have not considered
this and plan to perform a power down/up sequence. The default position is with JP49 removed.

PWRPWRPWRPWR

Remove this jumper when the target has its own power supply. When this jumper is in place, the
target can get Vcc from the pod, which can supply up to 0.5 amps. Higher currents cause a signifi-
cant voltage drop along the current path and the pod can be damaged.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 137137137

POD196–EA

Note
The pod is specified to run at a nominal 5V +/- 5%, or from 4.75V to 5.25V. At volt-
ages less than 4.7V, and at frequencies greater than 16 MHz, interrupts that occur
near the falling edge of CLOCKOUT might not be recognized. If you have removed
the PWR jumper and are using an external power supply, be sure the supply pro-
vides power within 5 percent of 5V.

RXD/TXD/GND (JP11 for RXD0 and JP13 for RXD1)RXD/TXD/GND (JP11 for RXD0 and JP13 for RXD1)RXD/TXD/GND (JP11 for RXD0 and JP13 for RXD1)RXD/TXD/GND (JP11 for RXD0 and JP13 for RXD1)

On all of the 196 pods except POD196–EA, there are three pins labeled RXD/TXD/GND.
POD196–EA has six pins (RXD0/TXD0/GND0, and RXD1/TXD1/GND1). This allows receive
(RXD), transmit (TXD), and ground (GND) signals for the 196 processor.

If your target outputs debugging information on the serial port, you might want to connect an
RS232 device like a terminal or a PC. The terminal is connected via clips or wires from these pins
to the terminal (input, output, and ground).

This pod includes a MAX232 chip to convert the signal levels from RS232 to TTL levels. Whether
or not you connect the RXD on J1 and J2 to an RS232 device, the MAX232 chip will drive the se-
rial port input pin on the controller. However, if P2.1 and P2.4 are used for low speed I/O, then
JP11 and JP13 should be removed. To allow the MAX232 chip to drive the serial port input pin,
place a jumper on theses headers.

The TXD pin gives the user the option of transmitting signals (output) to a terminal and a target
simultaneously. The RXD signal on the other hand can only receive a signal (input) from one
source at a time. The following diagram shows how this functions.

 WARNING

The processor cannot handle input from two different sources at the same time. If you are con-
nected to a terminal, through the MAX232 chip you must be in stand-alone mode (not connected to
a target). If you are connected to a target the RXD jumper on JP13 must be removed, so you are
not connected to a terminal and a target at the same time.

Appendix E. Discontinued 196 Pod BoardsAppendix E. Discontinued 196 Pod BoardsAppendix E. Discontinued 196 Pod BoardsAppendix E. Discontinued 196 Pod Boards

138138138138 EMUL196–PC User Guide

POD196–EA

Figure 76. Data Flow To and From the Target and the MAX232 Chip

TRACE (JP1)TRACE (JP1)TRACE (JP1)TRACE (JP1)

Trace header bits 0 through 7 can be used to trace slow moving signals and have them displayed in
the trace buffer window. The resolution on these inputs is equivalent to an execution cycle on the
POD196–EA. These inputs can be used similar to an 8-bit logic analyzer. Adding wires from the
target to any of those inputs can aid in debugging and development of your target.

RST (JP14)RST (JP14)RST (JP14)RST (JP14)

Occasionally, a target might contain an external device designed to reset the controller by pulling
the /RST pin low (i.e., a watchdog timer). During debugging, that can be inconvenient. The signal
from the target /RST pin passes through the RST header. Removing the RST jumper prevents the
external device from resetting the pod controller.

BUSWIDTHBUSWIDTHBUSWIDTHBUSWIDTH

This header controls the signal sent to the FLEX logic chips. The bondout chip does not correctly
assert the bus control signals when the CCBs are set to have an 8-bit wide bus. If you need to
emulate an 8-bit bus, you can do so reliably by setting the CCBs to have a dynamic bus width.

W
S SEL

M
AP SEL

Figure 77. Pod Configuration Headers

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 139139139

POD196–EA

MAP SEL (JP44, JP45, JP46)MAP SEL (JP44, JP45, JP46)MAP SEL (JP44, JP45, JP46)MAP SEL (JP44, JP45, JP46)

Install a jumper on JP44 to map CS0 to pod memory. Removing JP44 will make all CS0 accesses
go to target. Jp45 (CS1) and JP46 (CS2) behave in a similar manner to JP44. When deciding to use
these jumpers, you must remove the Auto-Map JP40 first.

Note
If you plan to install a jumper on JP44 – JP46, make sure you have enough pod
memory first to match the ADDRMASK and ADDRCOM ranges or memory overlap-
ping will occur.

Every time you have the emulator reset the controller, the emulator software writes
$0000 to addresses $1E78 and $1E7A. This feature uses chip select 0 to activate
emulation RAM throughout the entire address range and allows you to load code.
Typically, your start-up code will reprogram the chip select registers and you're
application will then run normally.

AUTO MAP (JP40)AUTO MAP (JP40)AUTO MAP (JP40)AUTO MAP (JP40)

Remove this jumper when using the MAP SEL headers JP44 – JP46.

EA16-EA20 Headers (JP6, JP12, JP16, JP17, JP21)EA16-EA20 Headers (JP6, JP12, JP16, JP17, JP21)EA16-EA20 Headers (JP6, JP12, JP16, JP17, JP21)EA16-EA20 Headers (JP6, JP12, JP16, JP17, JP21)

Each of these jumpers sits between the controller and the address signals going to the emulator and
trace boards. These address signals are used to correctly address emulation RAM on the pod, lo-
cate write cycles in Shadow RAM and assign addresses to trace records in the trace buffer.

If your application uses a controller with 16 address bits, for every address bit above 15 that the
application uses for addressing, move the corresponding jumper from the P6.x position to the
EA1x position. This will pass that address signal on to the emulator and trace boards. For each of
the bits that are used for I/O instead of addressing, put the jumper on the P6.x side.

 WARNING

Do not put more than one jumper on EA16, also labeled JP6. Having two jumpers on this header
can damage the bondout controller or some other part of the pod.

Appendix E. Discontinued 196 Pod BoardsAppendix E. Discontinued 196 Pod BoardsAppendix E. Discontinued 196 Pod BoardsAppendix E. Discontinued 196 Pod Boards

140140140140 EMUL196–PC User Guide

POD196–EA

P2.5/HOLD (JP30)P2.5/HOLD (JP30)P2.5/HOLD (JP30)P2.5/HOLD (JP30)

Pin 5 of Port 2 can output a HOLD signal. If your application uses that pin for a HOLD signal, put
the jumper in the HOLD position. If Pin 5 of Port 2 carries low speed I/O, put the jumper in the
P2.5 position.

INST/T_INST (JP32)INST/T_INST (JP32)INST/T_INST (JP32)INST/T_INST (JP32)

Locate this jumper according to how Pin 5 of Port 2 is being used. When using P2.5 to carry a
HOLD signal, put the jumper in the T_INST position. If that pin carries low speed I/O, place the
jumper in the INST position.

ALE/T_ALE (JP31)ALE/T_ALE (JP31)ALE/T_ALE (JP31)ALE/T_ALE (JP31)

Like the previous two headers, locate the jumper according to how Port 2 Pin 5 is being used. If it
carries a HOLD signal, put the jumper in the T_ALE position. If Port 2 Pin 5 carries low speed
I/O, place the jumper in the ALE position.

WS SEL (JP24 – JP26)WS SEL (JP24 – JP26)WS SEL (JP24 – JP26)WS SEL (JP24 – JP26)

These jumpers are reserved for A-step bondouts. Do not insert jumpers on these positions.

External Break In/Out (TP15/TP16)External Break In/Out (TP15/TP16)External Break In/Out (TP15/TP16)External Break In/Out (TP15/TP16)

These test points are used to synchronize two pods together. TP16 is the BRK_IN test point and
TP15 is the BRK_OUT test point.

Figure 78. Workaround for the Trace Buffer Addresses

Symbols in the Trace Window

Right out of reset, the 83C196EA looks for the startup code and CCB values starting at FF 2000.
(The 83C196EA has no ROM, uses external bus cycles and will only use 21 address bits, which
will truncate the address to 1F 2000.) Many applications will compile and link code and all code
symbols to page FF 0000 and up. If that application also maps global variables to address 0 and
then uses some of the higher address pins for low speed I/O, the trace disassembly and Shadow
RAM will be unable to associate the trace buffer addresses to the correct code symbols. (Some of
the EA1x jumpers will need to be in the P6.x position.) If this is true for your application, there is
a workaround you might want to consider.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 141141141

POD196–EA

Under these circumstances, to correctly associate addresses with symbols, the trace board needs to
receive an address that is different from the one appearing on the address pins. If you run a wire
from the EA1x side of the highest TRA1x header not carrying an I/O signal to the center pins of
the higher address headers, the trace board will get correct addresses for data space bus cycles.
The following example will make it clearer.

The application in Figure 78 uses the three highest address pins for low speed I/O. The 256K x 8
RAM chips need 18 address bits for holding data. These bits are bit 0 through bit 17. Again, the
instructions are mapped to the top of the address range: from FF 0000 to FF FFFF hex. This
wiring ensures that when address Pin 17 is high, the trace boar will receive high signals for
TRA17, TRA18 and TRA19. If this example application has global data symbols between
20000 hex to 40000 hex, they will not be identified correctly in the Trace window. This wiring
will have no effect on how the trace displays global symbols below 20000 hex or local variables
found on the stack.

Memory Mapping

While debugging your hardware and software, you typically want to use the RAM on your target
for data and replace your EPROM with emulation RAM so you can reload and run your applica-
tion quickly. Under most circumstances, this can be easily achieved with software memory map-
ping. However, on pods with 256K of emulation RAM, only pages 1C to 1F are controlled by
software memory mapping. All other pages go to target.

If your requirement is for 256K of memory, but want it mapped at different pages, you use the
hardware memory mapping. Remove JP40 (Auto-Map) and install JP44 though JP46 for the ap-
propriate chip selects. You are required to program the chip selects and have jumpers installed for
the pod to access its memory.

Note
Pods sold with 2 MB of emulation RAM have the extra hardware to correctly map
every address in software. On 1-MB pods, software memory mapping works only
for pages 10 – 1F. On a 2-MB pod, memory mapping works for the entire 0 – 1F
address space.

Port Replacement Unit (PRU)

A PRU is a hardware device that uses logic to allow the pod controller to have the bus control sig-
nals it needs while also allowing the applications to behave as though it has exclusive use of the
shared pins. It fits between the pod and the Nohau adapters and is required to provide port signals.
A 32-MHz PRU for POD196–EA, to provide Ports 3, 4, 5, and 12 as low-speed I/O.

Appendix E. Discontinued 196 Pod BoardsAppendix E. Discontinued 196 Pod BoardsAppendix E. Discontinued 196 Pod BoardsAppendix E. Discontinued 196 Pod Boards

142142142142 EMUL196–PC User Guide

POD–196LC–KR/NT

J4

PC-PWR

XJP1

Figure 79. POD–196LC–KR/NT (Rev. A)

Overview

CAUTION

This section describes the LOW COST 196–KR/NT pod only! For the standard KR/NT pod, refer
to the “POD196–KR.NT” section in Chapter 7, “Pod Boards.”

The POD–196LC–64–KR/NT has 64K memory on the pod for code and data. It has the function-
ality as POD196–256–KR/NT with the exception of the following:

• Trace capabilities

• Shadow RAM

• Hardware breakpoints

• Ports 3, 4 and 5 for low speed I/O (requires a PRU for this function)

If you require the first three items, you must use the POD196–256–KR/NT.

If you require the last item, use the EMUL196–PC/PRU–KRNT.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 143143143

POD–196LC–KR/NT

0.1 in. 0.1 in.

0.1 in.
0.1 in.

 1
.8

0
in

.
45

.7
 m

m

 1.80 in.
45.7 mm

 3
.8

1
in

.
96

 m
m

 4.63 in.
118 mm

Figure 80. POD–196LC–KR/NT Footprint Dimensions

This pod board contains an Intel 80C196 bondout microcontroller chip (suitable for emulating the
Intel 8xC196JQ, 8xC196JR, 8xC196JT, 8xC196KQ, 8xC196KR, 8xC196KS, 8xC196KT or the
8xC196NT). This is a 16-or 20-MHz crystal, with 64K of emulation RAM for instructions and
data, circuits for driving the cable bus, two flash PROMs, and two large FPGA chips.

Dimensions

The pod board itself is six inches by four inches (15.3 cm. by 10.3 cm). The pod requires between
one and two inches (2.5 cm to 5 cm) of space above the target, depending upon which adapter is
being used to connect the pod to the target.

PRU

A PRU is a hardware device that uses logic to allow the pod controller to have the bus control sig-
nals it needs while also allowing the applications to behave as though it has exclusive use of the
shared pins. It fits between the pod and the Nohau adapters. If any of the pins in Port 3, 4 or 5 are
used as low speed I/O, you must use a PRU.

Emulation Memory

The pod 196LC–64–KR/NT only has 64K of memory for use as code and data. If your memory re-
quirements are greater than 64K, then you need POD196–256–KR/NT or POD196–1M–KR/NT.

Headers and Jumpers

Pods are usually delivered with jumpers in their factory default position. Most headers apply to
all the processors supported by this pod. Some headers only apply to controllers with 20 address
bits (Figure 81). When shipped from the factory, all jumpers are in place for stand-alone operation.
When you connect any pod to a target, examine all jumpers and make sure that they are all cor-
rectly placed.

Appendix E. Discontinued 196 Pod BoardsAppendix E. Discontinued 196 Pod BoardsAppendix E. Discontinued 196 Pod BoardsAppendix E. Discontinued 196 Pod Boards

144144144144 EMUL196–PC User Guide

POD–196LC–KR/NT

BUSWIDTH JP6/TRA16 RST

B
W

G
N

D

VC
C

M
_I

N
ST

EA
16

G
N

D

JP
13

JP
14

JP
15

JP
12

\T
R

A1
7

JP
17

\T
R

A1
8

EA
17

\G
N

D

EA
18

\G
N

D

JP
21

\T
R

A1
9

EA
19

\G
N

D

R
XD H
LD

JP5

Figure 81. Header for Controller with 20 Address Bits

PC-PWRPC-PWRPC-PWRPC-PWR

This pod was designed to be powered through the 5-foot cable or through a separate disk-drive
power connector (J4). The PC-PWR jumper (XJP1) connects the supply fed through the 5-foot
cable to the Vcc plane. If you plan to connect the pod to your target and the whole system will be
powered from your PC, use the power connector (J4) to supply both the pod and target. We sug-
gest that if you power the pod through JP4, you remove XJP1 to break the current loop that would
be created by supplying the pod through two different wires.

 WARNING

The 5-foot cable can be damaged if too much current is sent to the pod and target.

ClockClockClockClock

These two headers each have two jumper positions: TARGET and POD. When set in the
TARGET position, the pod controller receives the clock signal from the target crystal. With
both in the POD position, the controller uses the crystal on the pod.

Note
When the clock jumpers are in the pod position, the XTAL signals from the pod are
disconnected from the target.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 145145145

POD–196LC–KR/NT

In ONCE mode, (only while using a clip-over adapter), all the target controller pins are tri-stated
except the oscillator pins. Because there is no way to disconnect the target crystal from the target
controller, the target crystal remains an active part of the clock circuit even when the jumpers are
moved to the POD position. Where the two oscillators are running at the same frequency, they
synchronize naturally. The presence of two oscillators does not affect how the application runs. If
they are different frequencies, you probably want to put both jumpers in the TARGET position and
use just the target oscillator.

PWRPWRPWRPWR

Remove this jumper when the target has its own power supply. When this jumper is in place, the
target can get Vcc from the pod as long as the current requirement is less than 0.5 amps. Higher
currents cause a significant voltage drop along the current path and the pod can be damaged.

 WARNING

For higher current requirements, use the power connector (J4) to supply both the pod and the
target. Make sure to remove the PC-PWR jumper (XJP1).

RXD/TXD/GNDRXD/TXD/GNDRXD/TXD/GNDRXD/TXD/GND

This jumper is not functional. Do not insert a jumper on this header.

RSTRSTRSTRST

Occasionally, a target might contain an external device designed to reset the controller by pulling
the /RST pin low (i.e., a watchdog timer). The signal from the target /RST pin passes through
the RST header. Removing the RST jumper prevents the external device from resetting the pod
controller.

HLDHLDHLDHLD

The target /HLD signal passes through the HLD header. Removing this jumper will prevent the
pod controller from receiving the hold request from a target device.

BUSWIDTHBUSWIDTHBUSWIDTHBUSWIDTH

This header controls the signal sent to the FLEX logic chips. The bondout chip does not correctly
assert the bus control signals when the CCBs are set to have an 8-bit wide bus. If you need to
emulate an 8-bit bus, you can do so reliably by setting the CCBs to have a dynamic bus width and
adding a jumper to this header in the GND position. Have two jumpers on this header, one in the
BW position and one in the GND position.

Appendix E. Discontinued 196 Pod BoardsAppendix E. Discontinued 196 Pod BoardsAppendix E. Discontinued 196 Pod BoardsAppendix E. Discontinued 196 Pod Boards

146146146146 EMUL196–PC User Guide

POD–196LC–KR/NT

If you have a PRU, refer to the Port Replacement Unit section for more information about the bus
width, the instruction width, and the CCB settings.

EA16-EA19EA16-EA19EA16-EA19EA16-EA19

The jumpers on these headers must remain in their default or grounded positions for all controllers
that use 16 address bits.

If your application uses a controller with 20 address bits, for every address above 15 that the
application uses for addressing, move the corresponding jumper from the GND position to the
EA1x position. This will pass that address signal to the on-pod memory. For each of the bits
that are used for I/O instead of addressing, put the jumper on the GND side. This also applies
to JP\TRA16, even though it has a different geometry than the other headers.

 WARNING

Do not put more than one jumper on EA16, also labeled JP6. Having two jumpers on this header
can damage the bondout controller or some other part of the pod.

INSTINSTINSTINST

The POD–196LC–KR/NT does not support this feature as it applies to customers who
require more than 64K-address space. If this is the case, use the POD196–256–KR/NT
or POD196–1M–KR/NT.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 147147147

Glossary
A

ABS file Many compiler assembler linker systems
put information about the source code, such as
symbol definitions and line numbers in the ABS
file. Absolute load file generated by a linker op-
eration after compiling/assembling the application
code. A superset of the 8051 OMF. A file con-
taining absolute (i.e. fixed location) data to load
into a computer.

Adapter The device that serves as an interface be-
tween the system unit and the devices attached to
it. A device used for making an electrical connec-
tion between different package types, such as
DIP40 to PLCC44. A connector or cable adapter,
which changes one type of connector to another.

Address Refers to where a particular piece of data or
other information is found. Also can refer to the
location of a set of instructions. Normally, but not
always the words are 8-bit quantities. Some sys-
tems might have a program memory with 12-bit
words and a data memory with 8-bit words.

Address Header The range of memory locations
that are addressable by changing jumpers on the
emulator and trace boards.

Address Space In Nohau emulators, there are often
several address spaces. Each address space has a
defined way of reading and usually writing to a
memory. Several address spaces can address the
same physical memory in different ways that are
convenient for different usage. Some address
spaces can address spaces that cannot be accessed
by any other address space. Some address spaces,
such as Shadow might exist only in the Nohau
Emulator and not in the target system.

ASCII An acronym for American Standard Code for
Information Interchange. A coding scheme using 7
or 8 bits that assigns numeric values up to 256
characters.

Assembler An assembler is a program that converts
a symbolic representation of computer instructions
into the representation that the computer requires
for operation. In Nohau emulators, the assembler
window displays the contents of program memory
as a numeric quantity, and in a symbolic form that
is acceptable to an assembler for the processor
being emulated. Information is lost in translation

when an assembler processes a program. The
symbolic form that the Nohau emulator disassem-
bles might not be exactly the original assembler
input that produced the numeric quantity found in
memory.

B

Bank Number Translation In bank switching de-
sign, cross-reference tables between bank number
and control byte pattern. This is necessary if the
bit sequence of bank switching control signals is
scrambled and not in order with the bit sequence
of control byte. This is not recommended.

Bank Switching A method of expanding the Code
Memory Space beyond that of microcontroller ad-
dress bus limitation by creating additional high or-
der address buses from a microcontroller 1/0 port
or a memory mapped latch. The details vary
widely. In general, one or more registers select
one of relatively large continuous banks of mem-
ory to be accessed by a range of addresses. See
also Memory window, page, paging, page register,
and window.

Banking See also Bank Switching, Memory window,
page, paging, page register, and window.

Base Register In the Motorola HCl2, HCl6, and
683xx families a Special Register that sets that
starting location of the block of Special Registers
that control the processor and the on-chip input /
output devices.

Basic CPU Register The registers that Seehau ini-
tially shows in the Register window. Some of these
registers, such as the PC and SP can not be acces-
sible in any other way. Others can be Special
Registers with a memory address that can be
viewed and modified in several different ways in
Seehau.

BDM An acronym for Background Debug Mode.
This is a debugging mode available on some fami-
lies of processors supported by Nohau emulators.
The production processors dedicate a small num-
ber of pins to the BDM functions. This allows a
small cable to connect an emulator and a produc-
tion system that includes the processor. The emu-
lator can then control the processor for debugging

GlossaryGlossaryGlossaryGlossary

148148148148 EMUL196–PC User Guide

in the production system. BDM emulator features
are usually limited by the small size of the cable.

BERG connector A 10-pin connector used to con-
nect a BDM pod to a target system.

Big Endian Having the bytes of a multi-byte number
ordered with the most significant (biggest) byte
first. Motorola usually uses this order. See also
Endian, and Little Endian.

Binary Data Refers to the computer numbering sys-
tem that consists of two numerals 0 and 1 Also
called base-2.

BNC connector An acronym for Bayonet Neil-
Councelman, British Naval Connector, Baby N-
connector, or Bayonet-Nut-Coupler. A connector
for coaxial cables that locks when one connector is
inserted onto another and rotated 90 degrees.
Trace boards have two additional input / output
connectors on the back called BNC connectors for
TRIGGER-IN and TRIGGER-OUT recording.

Bondout Short for bondout chip. A special variation
of a processor that brings out (bonds out to addi-
tional pins) many extra internal signals. These ad-
ditional internal signals allow the emulator to
display and control internal states and functions
that cannot be accessed in the mass production
version of the processor.

Bondout Chip See also Bondout, Bondout Emula-
tion, and Bondout Pod.

Bondout Emulation The emulation processor on
the pod is a special bondout processor, which usu-
ally features more pins than a standard production
processor. Also they are more expensive due to
low production volume. See also Bondout,
Bondout Chip, and Bondout Pod.

Bondout Pod A pod that has a bondout emulation
processor. See also Bondout, Bondout Chip, and
Bondout Emulation.

Boot To load a program into the computer. The term
comes from the phrase pulling a boot on by the
bootstrap.

Bootstrap A technique or device designed to bring
itself into a desired state by means of its own ac-
tion. The term is used to describe the process by
which a device such as a PC goes from its initial
power-on condition to a running condition without
human intervention. See also Boot.

Break To stop the execution of a processor in a way
that allows the processor to resume execution as if
nothing had happened.

Breakpoint A debugging feature that breaks the
processor at a particular location in a program or
when a particular data item is accessed. This can
be a software breakpoint or a hardware breakpoint.
See also Breakpoint Replacement.

Breakpoint Replacement If enabled, the emulator
will stop right before the breakpoint, otherwise it
will stop right after the breakpoint. This applies
only to hardware breakpoints. See also Break-
point.

BSW See Bank Switching.

Buffer A block of memory used as a holding tank to
store data temporarily. A region of memory to
hold data that is waiting to be transferred between
two locations as between an application's data and
an 1/0 device.

Byte A collection of bits that makes up a character or
other designation. Generally, a byte is 8 data bits.
When referring to system RAM, an additional
parity bit is also stored, making the total 9 bits.

Byte Order The order of bytes in a word. Some
processors (for example Motorola) store the most
significant byte first and others (for example Intel)
store the least significant byte first. It appears that
there is no decisive advantage to either scheme. In
machines without hardware support for words (for
example the 8051) some compilers use one order
and some use the other. One compiler even uses
one order for integers and the other for floating
point. See Big Endian and Little Endian.

C

CCR Acronym for (Emulator) Configuration Control
Register. These registers are used to control the
configuration of the emulator as contrasted with
the registers in the system being emulated.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 149149149

Chip An integrated circuit. Used to refer to processor
or memory integrated circuits

Chip Select A type of signal generated by some
processors that is suitable for connecting to a chip
select (CS) input of a memory chip. This allows
the connection between the processor and the
memory to be about as simple as connecting the
address lines, the data lines, and the chip select.

Code coverage A feature of some Nohau emulators
that records the fetching (in the 196, 16, and 300)
or the execution of instructions. Useful for evalu-
ating the effectiveness of a test suite. If the test has
executed an instruction once, this gives assurance
that the instruction can be executed without fault
in at least one case. If an instruction has not been
executed at all, there is a danger that it cannot be
executed without causing an error.

COFF An acronym for Common Object File Format,
a format for load files derived from the UNIX
culture.

Command Line The line on the display screen
where a command is expected. Generally, the
command line is the line that contains the most re-
cently displayed command prompt.

Command Set A named set of commands. A set of
commands used to perform specific operations /
tasks with the emulator. A list of instructions rec-
ognized by a microcontroller.

Compiler A program that converts a symbolic de-
scription of a computer program into a form the
computer can execute. Compilers are distinguished
from assemblers in that they accept input that is
not directly related to the actual machine instruc-
tions. The output from a compiler is called an ob-
ject program. Most Nohau emulators support C
and C++ compilers by reading extra information
provided by the compiler. This allows the emula-
tors to display the compiler source code that cor-
responds to a program location and to display the
values of variables in a style appropriate to the
way they were defined in the source program.

Core Command A core command is a hardware
specific operation command issued by the user
interface. Core commands are processed by the
core part of Seehau to deal with the target hard-
ware, file loading, and keeping the symbol table;
unlike a GUI (Graphical User Interface) command
that only affects the appearance of a window.

CPU symbol Default symbolic reference to the mi-
crocontrollers Standard CPU registers. Symbols
used in the microcontroller CPU architecture defi-
nition, especially for Special Function Registers
(SFR), usually related with a SFR physical ad-
dress.

CPU An acronym for Central Processing Unit. The
computational and control unit of a computer; the
brains. This device interprets and executes in-
structions.

Crystal A frequency determining element. A reso-
nating crystal used in a clock circuit for the micro-
controller. A piece of silicon that oscillates at a
predetermined frequency. An oscillator of some
kind drives all microcontrollers. The device on the
pod or the target that provides time base for the
clock generation circuitry in microcontroller. Usu-
ally required to be connected to two crystal pins
on the microcontroller. It determines the operation
speed for the microcontroller. There is usually a
frequency multiplier or divider involved, i.e. 5-
MHz crystal *4 (multiplier) = 20-MHz System
Clock. See also Internal Crystal and External
Crystal.

Cycle Type A named sequence of events. A category
of instruction action in a machine cycle usually
related with a chip-select or strobe signal issued
by the microcontroller. For example, in the 8051
family, there are Opcode Fetch Cycles (/PSEN),
XData Write Cycles (IWR), and XData Read Cy-
cles (/RD). Cycle type refers to the default symbol
table that has been defined by Nohau for the mi-
crocontrollers internal registers.

D

D connector See DB-25 connector.

Data Bus Width Override Determines how much
data can be transmitted at one time. For example, a
16-bit bus can transmit 16 bits of data, whereas a
32-bit bus can transmit 32 bits of data.

Data Window A window in Seehau user interface
that displays data stored in memory.

68HC12 MCU chip feature that allows a section of
the 16-bit address space to address pages of data
space. The DPAGE register controls the page
visible in the window.

GlossaryGlossaryGlossaryGlossary

150150150150 EMUL196–PC User Guide

DB-25 connector A 25-pin D-shell connector pri-
marily used for PC parallel ports. The mechanical
interface of a 25-wire cable with a male (M) and
female (F) DB-25 pin connector attached to either
end. A plug with 25 pins or receptacles, each of
which is attached to a single wire with a specific
function. Originally called an RS-232 (now EIA-
232), the latest which defines not only the type of
connectors to be used but also the specific cable
and plugs and the functionally of each pin. In No-
hau culture also referred to as a D connector.

Debug File A file generated by C Compilers / As-
semblers, which contains both code and symbol
cross-reference in the source file. The file usually
has a special filename extension such as OMF,
ABS, or no extension at all. To get symbol infor-
mation, the debug file should be loaded into the
Seehau software. Hex files will not provide sym-
bol information.

Delay The number of trace frames collected after a
trigger event occurs.

Dialog box A special window displayed by the sys-
tem or application to solicit a response from the
user.

Double A C floating point type usually represented
in 64 bits.

DPRAM An acronym for Dual-ported RAM.
DPRAM is a dual-ported random access memory
with separated ports of different bus width for
READ and WRITE function. The bus width is 1
bit for READ and 16 bits for WRITE. The READ
and WRITE access can be performed simultane-
ously or at independent clock rates at frequencies
up to 50 MHz.

DRAM An acronym for Dynamic Random Access
Memory. A form of semiconductor random access
memory. Temporary storage that must be re-
freshed over time.

DWARF An acronym for Debug With Arbitrary Rec-
ord Format. The debugging information format as-
sociated with the ELF load file format. Designed
for the better support of C++. See also ELF.

E

Edge connector The part of a circuit board con-
taining a series of printed contact that is inserted
into an expansion slot or connector. The part of
the expansion board that is inserted into the moth-
erboard. See also Expansion Board.

EEPROM An acronym for Electrically Erasable Pro-
grammable Read Only Memory. A type of non-
volatile memory chip used to store semipermanent
information. An EEPROM can be erased and re-
programmed directly in the host system without
special equipment. Read Only Memory (ROM)
that can be electrically erased and programmed
too repeatedly. Also called flash ROM. See also
Flash Memory.

ELF An acronym for Executable and Linkable For-
mat. A file format for program and data to be
loaded into a processor. Usually associated with
the DWARF debugging information format. See
also DWARF.

Emulator A piece of test apparatus that emulates or
imitates the function of a particular chip. This de-
vice runs the code in the same way and at the same
speed as the real microcontroller. The emulator fa-
cilitates debugging by providing more information
about internal operations of the microcontroller.
The emulator gives better control of operations
and faster more flexible loading of programs.

Emulator Board An ISA card, which is plugged
into PC or an HSP box with emulation memory
onboard. It is connected to a pod through a special
flat cable. In some emulators the functionality of
the emulator board is integrated into the pod so, it
might not be available separately.

Emulator Memory Memory internal to the emula-
tor. Some emulator memory can be used for the
internal purposes of the emulator that will not
normally be visible to the emulator user. Memory
provided in the emulator that makes code debug-
ging possible without a target. Overlay memory
for the emulator to simulate the memory for On or
Off chip memory.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 151151151

Emulation Mode The emulation processor on the
pod running customer application code to enable it
to simulate a real target processor.

Emulation Processor The processor provided on
the pod, which is used to emulate a target proces-
sor. It might or might not be the same as the target
processor.

Endian The bytes, which are most significant in a
multi-byte word. See Little Endian and Big En-
dian.

Environment settings User interface setups for the
debug environment such as load path, source file
path(s), file load options, etc.

EPAGE A register in some Motorola 68HC12 family
members that controls what page of Extra memory
it mapped into the Extra Page window. See the
Motorola User’s Guide for the particular family
member for further information

EPC An acronym for Emulator Parallel Cable. A No-
hau product that attaches an emulator to a laptop
computer parallel (printer) port.

EPROM An acronym for Erasable Programmable
Read Only Memory. A type of ROM that can be
erased by exposure to ultraviolet light and pro-
gramming repeatedly. See also EEPROM.

Expanded Mode See External Mode.

Expansion Board Any board that plugs into one of
the computer's expansion slot. Expansion boards
include controller boards, trace boards, and emu-
lator boards.

Expansion Card See Expansion Board.

External Crystal The crystal on the target is used
for the crystal source of emulation processor.

External Mode The code and or data memory is
external to the microcontroller. Some ports on the
microcontroller are functioning as data bus and/or
address bus. See also Single Chip Mode.

External Mode Pod A pod whose emulation proc-
essor works in External Mode. The same as a
standard production processor.

External Power The emulation processor on the
pod gets power from the target. Recommended for
Bondout pods and Low Voltage Emulation. The
external power can be used only when the target is
connected to the pod.

Extra Window A 68HC12 MCU chip feature that
allows a small section of the 16-bit address space
to address pages of extra space. The EPAGE reg-
ister controls the page visible in the window.

F

Fast Break Write A feature of some Nohau emula-
tors that allows writing to target memory while the
target is running. It causes minimal interruption to
the target execution. It does stop (break) the target
processor for a short time.

Filter A set of conditions that determine which
frames are allowed into the trace buffer. Filtering
selects the type of information in an address range,
and the type of data that is recorded in the trace
memory. This is a distinct action separate from
Filter Mode.

Filter Mode This mode is different from filter. See
Window Filter and Normal Filter.

Flash ROM Flash ROM, also known as flash. A type
of EEPROM that has been optimized for faster
(flash) erasing and programming. See also
EPROM and EEPROM.

float A C type for floating point numbers. Often 32
bits in length.

Floating Point The computer version of Scientific
Notation for numbers. A fraction and an exponent
represent the number.

Frame A unit of information in a trace buffer. Usu-
ally a record of a target memory reference, but can
record other events such as a low power state or
the passage of time.

Frame Number An arbitrary number assigned by
the emulator to each frame in a trace buffer. Posi-
tive frame numbers occurred after the trigger and
negative frame numbers occurred before the trig-
ger. If a trigger did not stop tracing, the last re-
corded frame number is -1.

GlossaryGlossaryGlossaryGlossary

152152152152 EMUL196–PC User Guide

Frequency Multiplication Multiplying external
clock input signal's frequency by a factor and feed
it to the CPU inside a microcontroller. Often done
by a Phase Lock Loop (PLL) circuit inside the mi-
crocontroller. Electromagnetic Interference (EMI)
is reduced this way. A factor used by a microcon-
troller to multiply the crystal (oscillator) fre-
quency, i.e. 5-MHz crystal *4(multiplier) = 20-
MHz System Clock.

Frequency limit The maximum or minimum fre-
quency at which an emulator is designed to oper-
ate properly.

Full Emulator An emulator with the ability to add
trace capabilities. Full emulators often use the
BDM pins on the processor to do some of the
emulator functions in addition to providing trac-
ing, shadow memory, and more breakpoints.

G

GPT An acronym for the General Purpose Timer, a
hardware feature found on some Motorola embed-
ded processors.

GUI Command GUI commands are graphical user
interface commands that allow you to choose
commands and functions by pointing to a graphi-
cal icon using either a keyboard or pointing device
such as a mouse, trackball or touch pad. Seehau
has a GUI part that handles the display and control
for the user. This part is common to all Nohau
emulator families. The Seehau GUI sends com-
mands to the core (see Core Command) which is
specific to a particular family of processors. These
commands can be recorded in macros. To allow
macros to affect the display, the GUI also sends
commands to itself.

H

Hardware Breakpoint A breakpoint function im-
plemented in hardware, either in a processor chip
or in an emulator. The distinguishing feature is the
hardware, which does not require any software
modification to place the breakpoint. This allows
breakpoints to be effective in ROM of all kinds.
See also Breakpoint, and Software Breakpoint.

Hex Hexadecimal, a number encoded as base-16 in-
stead of base-10. Widely used for display of mem-
ory addresses and hardware registers because
humans and computers more easily translate it into
bits than standard decimal notation. See also
Hexadecimal.

Hex File An ASCII file consisting of a number of
Hex records, which represent machine language
code and / or constant data with hexadecimal
numbers. A load file or absolute file with the data
in hexadecimal numbering (base-16). It is usually
used to transfer the program and data that would
be stored in a ROM or EPROM. No symbol / de-
bug information is included in the Hex file. Nohau
supports a standard hex file format for each fam-
ily, Motorola S-Record or S19 for Motorola fami-
lies, and Intel Hex for Intel families. Other
manufacturers adopt one or the other as their hex
file format standard.

Hexadecimal A numbering system used in comput-
ers. 16 characters: 0 through 9, and A through F
(upper or lower case) to represent the numbers 0
through 15. One hexadecimal digit is equal to 4
bits, and one byte is two hexadecimal digits. See
also Hex.

High Speed Parallel Box See HSP.

Hooks Emulation Mode The emulation processor
on the pod is a standard production microcontrol-
ler, but is put into a special Hook's mode, which
makes the emulation possible.

Hooks Mode A special emulation mode that is built
into specific microcontrollers. A special operation
mode, in which the microcontroller provides extra
internal signals via unused bus cycles, emulator
circuitry also controls the microcontroller through
these cycles. It is an extra feature built into the mi-
crocontroller. An emulation mode peculiar to
some 8051 derivatives.

Hooks Mode Pod A pod whose emulation proces-
sor works in Hooks Emulation mode.

HSP A box with its own power supply, which can
hold an emulator board and, or an optional trace
board. The
HSP box contains a motherboard with three ISA
slots. The HSP box allows the use of the in-circuit
emulator and optional trace board when no ISA
slots are available in your PC. The HSP connects
to the PC printer port, so it can be used with a
laptop computer or a standard PC. It is valued for

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 153153153

power-up, and power-down emulator convenience.
See also High Speed Parallel box.

HSP card An ISA board in the HSP that connects to
a PC through a cable from the serial interface on
the card to the parallel port on the PC or laptop
computer.

I
I/O Input/Output. A circuit path that enables inde-

pendent communications between the processor
and external devices.

I/O Port Input/Output port. Used to communicate to
and from devices, such as a printer or disk.

IC An acronym for Integrated Circuit. A complete
electronic circuit contained on a single chip. See
also Chip.

IEEE–695 A widely supported load file format speci-
fied by IEEE (Institute of Electrical and Electron-
ics Engineers) standard 695.

Inspect Window A Seehau user interface window
that displays current value of the selected item.
The window is updated each time emulation
breaks. It can be used for evaluation and modifi-
cation of some expressions as well as of C and
C++ variables using the symbols of the currently
loaded program.

int A C type for integer.

Integer A whole, or ordinal number. A number with-
out a fractional part, for example 1.

Intel absolute object format Absolute file format
defined by Intel. (INTEL OMF) A debug file for-
mat defined by Intel Corporation in 1982. A su-
perset of the 8051 OMF. See also ABS.

Intel Byte Order Having numbers represented by a
sequence of bytes with the first byte holding the
least significant 8 bits of the number. See also Lit-
tle Endian.

Intel Hex A load file format. This format is a text file
with the addresses and the data to be loaded in
hex. This format makes no provision for commu-
nicating symbol values to the emulator software.

Internal Crystal The factory default crystal on the
pod is used for the crystal source of emulation
processor.

Internal Power The emulation processor on the pod
gets power from the emulator board. Recom-
mended in all times except for bondout pods and
low voltage emulation.

Internal Symbol Table The default, built in sym-
bols. See also Symbol Table.

Interrupt Vector Table A table, which keeps a
cross-reference between interrupt source and the
starting address of the corresponding interrupt
service subroutine. See also Vector Table.

ISA An acronym for Industry Standard Architecture.
The original IBM PC-AT plug-in card format and
bus structure. Some Nohau emulators plug into
this bus.

ISA slot A connection socket for a peripheral de-
signed according to the ISA standard that applies
to the bus developed for use in the 80286 mother-
board.

Isolator An adapter, which has many small switches
in the middle so the user can connect or discon-
nect, signals selectively. Used in target connection
troubleshooting.

J
Jargon File A dictionary widely available on the

Internet that defines many obscure informal com-
puter terms, such as Big Endian and Little Endian.

Jumper A small, plastic-covered metal clip that slips
over two pins protruding from a circuit board.
Sometimes also called a shunt. When in place, the
jumper connects the pins electrically and closes
the circuit. By doing so, it connects the two termi-
nals of a switch, turning it on. A group of jumpers
are referred to as a jumper block.

L
LC–ISA An acronym for Low Cost-Industry Standard

Architecture. This is a
Background Debugging Mode (BDM) pod. See
also BDM.

GlossaryGlossaryGlossaryGlossary

154154154154 EMUL196–PC User Guide

LED An acronym for Light Emitting Diode. A semi-
conductor diode that emits light when a current is
passed through it.

Linker A program that takes relocatable object files
produced by compilers and assemblers and com-
bines them with precompiled library programs into
a load file that can be loaded into a target proces-
sor. The linker usually puts the symbols defined in
the source programs into the load file in a way the
emulator loader can decode.

Little Endian Having the bytes of a multi-byte num-
ber ordered with the least significant littlest byte
first. Intel usually uses this order. See also Big
Endian.

Load file A file that contains a program in binary
form to be loaded into the target. Nohau emulators
support many formats of load files. Most formats
include the final translated values of the symbols
used in the original source files.

Locator A term used for a linker that takes directives
for setting the locations in the target processor of
the various arts of the program.

long A C type for integer that is at least as big as int.
Usually 32 bits or 64 bits.

Low Voltage Emulation The target works at a
voltage lower than 5V DC, such as 3V DC. Exter-
nal power is required. LPT PortLine Printer port,
is a common system abbreviation for a parallel
printer port.

LSB First An acronym for Least Significant Bit first.
Having numbers represented by sequence of bytes
with the first byte holding the least significant 8
bits of the number. See also Little Endian.

M
Macro A set of keystrokes and instructions recorded

and saved under a short key or macro name. Used
to save time by replacing an often-used, some-
times lengthy, series of strokes with a shorter ver-
sion.

Maximum frequency The frequency limit on the
pod.

MCU An acronym for Micro Controller Unit. Industry
jargon for a single-chip computer of some kind.

Memory The storage parts of a computer. Usually
organized into addresses, which pick one of many
locations that each hold, the same number of bits.
Often the contents are bytes of 8 bits.

Memory Dump The hexadecimal representation of
an area of memory. The copying of raw data from
one place to another with little or no formatting for
readability. Usually, dump refers to copying data
from main memory to a display screen or a printer.
Dumps are useful for diagnosing bugs.

Memory Image A copy of one area of memory in
another area of memory. See also Shadow RAM.

Memory Mapping Controls the operation of selec-
tion between emulation memory and the users tar-
get memory. Any memory address can be either
mapped to emulator memory or target memory. If
it is mapped to emulator memory, it will be
mapped to RAM on the emulator itself and the
memory space on the target will be ignored. If it is
mapped to target, whatever device on the target
(RAM, ROM, I/O) will be used and the corre-
sponding emulator memory (RAM) will be ig-
nored.

(memory) Page A section of a memory with a
larger address range that is accessed in a smaller
window (Q.V.) in an address space with a smaller
address range. The page (number) or page register
supplies the most significant bits of the larger ad-
dress, and the address in the smaller window sup-
plies the least significant bits of the address.

Individual families of processors, and individual
models within families have unique variations in
the details of paged addressing schemes. If you
have to understand a particular scheme, read the
manufacturer's documentation carefully. See also
banking, bank switching, memory window, page,
paging, page register, and window.

Memory Space Memort space is a range of memory
that is accessible to a microcontroller, and can be
used for different purposes, but can occupy the
same addresses in memory. The number of address
lines used usually determines the size of this
space. The property of physically or logically
separate memory blocks, which are accessed by
different type of instructions such as code, external
data, and internal data.

Menu A list of options from which you can select in
order to perform a desired action.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 155155155

MHz An abbreviation for megahertz, a unit of meas-
urement indicating the frequency of one million
cycles per second.

Micro-clip A series of wires connected to the DB-25
connector on one end and small clips attached to
the wires on the other end. Rather than a ribbon
cable there are individual wires emanating from
the connector that can be used for input and output
data. The ends with the small clips can be attached
to the target system.

Mixed mode A display format for Seehau source
and trace windows where the source lines are dis-
played with the disassembled instructions that
were compiled from the source line.

Monitor Mode The emulator actions are being ob-
served in this mode. The emulation processor is
running Emulator Monitor Code. Microcontroller
specific code that runs when the emulator is not
running the user application code. When there is
no program execution going on, but we still have
to access memory, registers and set up windows,
etc. Monitor mode runs everything except the tar-
get program execution.

Motorola absolute object format Absolute file
format defined by Motorola. (MOTOROLA
COFF)

Motorola Byte Order Having numbers represented
by a sequence of bytes with the first byte holding
the most significant 8 bits of the number. See also
Big Endian.

Motorola Families Groups of microcontrollers that
are closely related in characteristics that are manu-
factured by Motorola.

MSB First An acronym for Most Significant Bit first.
Having numbers represented by a sequence of
bytes with the first byte holding the most signifi-
cant 8 bits of the number. See also Big Endian.

N

ncore.log Log file produced by the operation of
emulator, contains information of the data passed
between the CORE level program and the users
interface. The Log to file check box in the Envi-
ronment Configuration, Options tab controls the
writing of this log file. The file is written to the di-
rectory where Seehau.exe is installed.

New Hacker’s Dictionary A very useful dictionary
of computer jargon published by the MIT press.
See also Jargon File.

Normal Filter Mode In this mode the last enabled
trigger can be assigned a repeat counter that
causes the trace to look for this last trigger a num-
ber of times before a trigger is recognized.

O

OLE automation An acronym for Object Linking
and Embedding. A distributed object system. The
ability for an external program, that is or contains
a programming language, to control another pro-
gram.

OMF file A debug file format, abbreviation of Object
Module Format. Object Meta File -industry base
standard. A load file format.

Oscillator A self-contained device which generates a
clock signal of a specified frequency without the
assistance of external feedback circuitry. Its output
usually can be fed directly to the clock-input pin
of a microcontroller.

P

P & E A manufacturer of software. A symbol file
format used with Motorola MCUs is named for
them.

Page A fixed-size block of memory whose physical
address can be changed through mapping hard-
ware.

Paging A method of expanding a computer's mem-
ory beyond the limits of an address size. A tech-
nique for implementing virtual memory. The
virtual address is divided into a number of fixed-
sized blocks called pages, each of which can be
mapped onto any of the physical addresses avail-
able on the system. One or more registers select
one of relatively large continuous pages of mem-
ory to be accessed by a range of addresses. Some-
times used as a synonym for bank switching.

GlossaryGlossaryGlossaryGlossary

156156156156 EMUL196–PC User Guide

Paged Addressing See Bank Switching.

PC Common industry acronym for Program Counter,
but also used to mean Personnel Computer. See
also Program Counter.

Pipelined Architecture A computer architecture
that speeds up the instruction execution rate by
executing each instruction in stages, and executing
different stages of several instructions at the same
time. A common set of stages is Instruction fetch,
data fetch and data store. In a computer with this
type of pipelined architecture a single instruction
would progress through these stages in sequence.

At the same time the computer might be doing:
fetch of instruction 3
data fetch for instruction 2
data store of the results of instruction 1

At the next cycle the computer would be doing
fetch of instruction 4
data fetch for instruction 3
data store of the results of instruction 2

A confusing side effect of this architecture is that
the memory references for instructions and data,
can not be in the order one would expect from
what instructions the computer is executing. (No-
tice that in the preceding example, instruction 3 is
read from memory before the results of instruction
2 are stored.)

The trace feature of Nohau emulators for proces-
sors with pipelined architecture make an effort to
clarify this confusing situation by giving either a
hardware view showing the memory references in
the actual order on the memory bus, or a software
view showing the memory references as they are
logically executed by the computer.

For historical reasons, the terms for the hardware
and software views are not uniform among the dif-
ferent computer families supported by Nohau.

PLCC An acronym for Plastic Leaded-Chip Carrier.
A popular chip-carrier package with J-Ieads
around the perimeter of the package.

Plug-and-sleeve connector A connector type that
has nine or more different sizes that look almost
the same. It is necessary to get an exact size match
to get reliable operation.

Pod A small module of electronics or a circuit board,
which contains an emulation processor and some
accessory circuitry that, connects the emulator to
the target via an adapter. This can be a small plas-
tic container with a circuit board inside or an open
circuit board with exposed pins that connect to the
target system. See also Bondout Pod, Hooks Mode
Pod, and External Mode Pod.

Power Selection To determine whether to use in-
ternal power or external power for the emulation
processor on the pod. Usually controlled by a
jumper on the pod.

Power supply (short and long tail) An electri-
cal/electronic circuit that supplies all operating
voltage and current to the system. There are two
power supply units for powering the emulators.
Both of these units are 5-volt, 6-amp units, but
with one difference; one has a short tail (the length
of the power cord from the converter to the plug)
and the other a long tail. The long tail is used for
powering the BDM pods only, not the HSP box.
The short tail power supply unit can be used for
powering the BDM pod or the HSP box.

PPA (Program Performance Analyzer) A statis-
tical tool used to collect information from a cur-
rently executing program. Displays the number of
clock cycle functions required for accessing data.

PPAGE A register in some Motorola 68HCl 2 family
members that controls what page of program
memory it mapped into the Program Page Win-
dow. See the Motorola User’s Guide for the par-
ticular family member for further information.

Program counter A contraction of the more de-
scriptive Program Location Counter. Often abbre-
viated to PC. The program counter indicators
provide line number information supplied by com-
piler manufacturers. The register in a computer
that holds the address of the current instruction.
Normally it is incremented by the size of each in-
struction as the instruction is fetched from memory
to be executed. (Jump, Branch and Call instruc-
tions can change the PC to a new, out of sequence
location.) Interrupts also change the PC.

Program Step General term for one of four emula-
tor features that allow the user to see the results of
program execution in a step by step fashion. They
are: Source Step Over, Source Step Into, Assem-
bler Step Over and Assembler Step Into.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 157157157

Program Window A 68HC12 MCU chip feature
that allows a section of the 16-bit address space to
address pages of program space, usually on chip
flash memory. The PPAGE register controls the
page visible in the window.

PWM An acronym for Pulse Width Modulator or
Pulse Width Modulation. Embedded computers
often have a PWM output unit. This unit generates
logic outputs with variable widths and selectable
rates. These pulses are frequently averaged to give
a variable voltage between logic high and logic
low.

R

RAM An acronym for Random Access Memory. All
memory accessible at any instant (randomly) by a
microprocessor. Used to refer to the read/write
memory of an embedded computer system.

Register Storage area in memory having a specified
storage capacity, such as a bit, a byte, or a com-
puter word, and intended for a special purpose.
Something that holds a value. A set of high-speed
memory within a microprocessor or other elec-
tronic device. A collection of electronic circuits
that holds a number. Used in reference to memory
locations. In Seehau documentation, we refer to
many kinds of registers. Among them are Special
Function Registers (SFR), Configuration Control
Register (Emulator (CCR)), Special Register, Base
Register, Basic CPU Register and User-Defined
Register.

Reset and Go A feature of Nohau emulators that
applies a reset signal to the target system and then
starts it immediately. This simulates the real-world
effects of a short power failure. Useful for testing
initialize code, especially on systems that limit the
writing of some registers to a small fixed number
of cycles after a reset.

Ribbon cables A flat cable containing up to 100
parallel wires for data and control lines. Nohau
Corporation uses these cables to connect the pod
boards to the PC or HSP and the trace board to the
emulator board.

ROM An acronym for Read Only Memory. A type of
memory that has values permanently or semiper-
manently burned in. Often used in imbedded sys-
tems for program storage. Older versions can
require a special process at the semiconductor fa-

cility to program. See also EPROM, EEPROM,
and Flash.

Rotational Cable A cable adapter that allows con-
nection of a pod to a target with a thin cable that
can go out over the target system in the direction
of any side of the target processor. Very useful for
connecting an emulator to a cased target system

S

S19 A load file format. This format is a text file with
the addresses and the data to be loaded in hex.
This format makes no provision for communicat-
ing symbol values to the emulator software.

SAX A subset of Microsoft's Visual Basic. SAX is
 version of a micro code language
that is somewhat compatible with Visual
Basic.

Seehau A high-level language user interface that
allows you to perform many useful tasks including
the following: Load, run, single-step and stop pro-
grams based on C or Assembly code. Set trace
triggers and view trace. Modify and view memory
contents including Registers. Set breakpoints.
Analyze code with Program Performance Analy-
sis.

Set Breakpoints A directive to actually place
hardware or software breakpoints into the target
system.

SFR An acronym for Special Function Register. For
some microprocessor families, this has a precise
meaning spelled out in the microprocessor docu-
mentation. For other families, it is used very im-
precisely, but always to refer to registers in the
system being emulated. See also Registers and
Special Registers.

SFR branch Some Special Function Registers are
BIT addressable, so the base register can be
branched to its BIT level definitions.

SFR symbol Default symbolic reference to the mi-
crocontrollers Special Function Registers.

Shadow RAM A real time mapping of microcon-
troller data memory. Updated in full speed emula-
tion. Shadow RAM is used to duplicate the
contents of the target RAM. Every time the CPU
generates a WRITE bus cycle, the pod captures

GlossaryGlossaryGlossaryGlossary

158158158158 EMUL196–PC User Guide

the address / data pair and the emulator board
writes that data to the same address in Shadow
RAM. The Nohau Shadow RAM feature allows
you to view memory contents in real-time without
stealing cycles from the emulation CPU.

short A C integer type that can be any size from
character to integer.

Single-Chip Mode Code and/or data memory is
inside the microcontroller. No address / data bus
available externally on microcontroller pins. This
mode can be emulated only by bondout pods or
hooks mode pods. This mode cannot be emulated
with external mode pods.

Software Breakpoint A breakpoint function im-
plemented by replacing an instruction with another
instruction that causes the target system to stop in
an orderly fashion (break). The distinguishing
feature is that no special purpose hardware is re-
quired for placing the breakpoint. This allows a
large number of breakpoints. A software break-
point can not function in ROM. See also Break-
point and Hardware Breakpoint.

Solder Down A socket that is soldered down to a
PCB in place of a microcontroller that allows an
emulator adapter to be plugged in to the target cir-
cuit. Some solder down sockets allow the micro-
controller or the emulator adapter to be plugged.
This usually consists of a detachable top half and a
solder-down base, so that the pod can be easily
removed. In contrast with a socketed connection.
See also Solder Down Adapter and Solder Down
Base.

Solder Down Adapter The adapter is soldered
down directly on the target surface mount foot-
print, which replaces the socket. See also Solder
Down and Solder Down Base.

Solder Down Base The lower half of a solder
down adapter assembly. Usually included in a sol-
der down adapter assembly but can be ordered
separately.

Source A window in Seehau user interface that dis-
plays the source program. See also Source Pro-
gram.

Source Program An informal name for the program
description that the software engineers or pro-
grammers write for input to the compiler or as-
sembler. The source of the intermediate files and

the final program that can be executed by the
computer.

SP An acronym for Stack Pointer. See Stack Pointer.

Special Register In Motorola families, the memory
locations in the system being emulated that have
side-effects such as controlling input/output de-
vices and processor configuration; as contrasted
with ordinary memory (RAM and ROM) locations
that just hold data.

Seehau allows a user to add Registers - Add Reg-
ister to define a new special register, Registers -
Add Special Registers (SFR) to display a special
register defined in a file and File - Load Default
CPU Symbols to make the special register defini-
tions available for disassembly and in-line assem-
bly.

SRAM An acronym for Static Random Access Mem-
ory. A type of RAM that will hold its contents
without any electronic activity as long as power is
applied. See also DRAM (Dynamic Random Ac-
cess Memory) which requires periodic electronic
refresh cycles to keep its contents.

Stack Overflow A situation where the Stack Pointer
exceeds the maximum allowed value or falls short
of minimum possible value, and is pointing to
some address which, is not a stack. A condition
where the size of a stack has exceeded or at-
tempted to exceed the memory allocated to the
stack. Usually this happens when there is too many
nested function calls. Not always recognized
automatically, and generally prevents continued
correct operation of programs using the stack.

Stack Pointer A register that contains the current
location of the program stack.

Startup.bas A macro file that is used by Seehau to
input stored values for starting a previously setup
project.

Symbol A compiler symbol such as a variable or
function name or an assembler symbol such as a
label or more generally, the information associated
with a symbol. In Seehau, Loading Symbols refers
to the process of reading the information that the
compiler and linker have provided about the
source of the program being loaded.

In addition to the detailed information about each
symbol, this information includes the relation of
the source file to the target processor instructions

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 159159159

that are executed. If Seehau symbols are removed,
information connecting the target memory with the
source code and symbols are also removed. There-
fore, all source-related features such as the Source
window and the Inspect/Watch window will cease
to function.

Symbolic Data Included in many file load formats
to give the user the ability to debug their code with
specifics to symbol type, module, functions, etc.
Symbolic data can be used to refer to files that
represent computer code with symbols, that is ei-
ther assembler or compiler source files. It can also
refer to compiler, assembler or linker output files
that have preserved some of the original symbolic
information for debugging.

Symbolic Format A format using identifiers rather
than numbers. Accessing a component by its sym-
bolic name.

System Clock The main CPU clock. The operating
frequency of the microcontroller.

T

Target A general name for the embedded system
being developed with the help of an emulator. A
customer application circuit board, the microcon-
troller on which is to be replaced by a pod during
emulation.

Time.bas A macro file used to run the timer program
to test pods.

Timestamp A feature that displays the number of
machine cycles that have elapsed since the begin-
ning of program execution.

Trace A comprehensive tool used to analyze the mi-
croprocessor environment. An emulator feature
that records detailed information about target
memory accesses while the target system is in op-
eration. Triggering features allow the trace to be
stopped on conditions of interest so that the user
can look at the trace information and save it to
disk without disturbing the operation of the target.

Trigger An event that stops trace buffer recording.

Tristated An output, which has a third state of high
impedance in addition to the regular high and low
state. When tristated, there is a high impedance
seen by the rest of the circuit, there is no current
sourcing or sinking.

U

uP clock The uP Clock is the internal CPU clock of
the microprocessor. This setting is used only for
the calculation of the trace time stamp.

User-Defined Register Registers added to the reg-
ister window by a user using the Registers - Add
Special Registers (SFR) menu item. They are
saved when the configuration settings are saved.
Also used to refer to some of the symbols defined
in a load file.

V

Vcc In electronic designs the supply for transistor
collectors originally, now usually the commonly
used positive power supply. The power supply in
Bipolar Integrated Circuits (IC) usually wired to
the transistor collector in the IC. Normally posi-
tive 5 volts.

Vector Table A table of addresses to jump to when
certain actions occur. There is usually a start vec-
tor where program execution starts, and an error
vector (hardware trap) where the controller jumps
to if a problem occurs, and many other vectors.

W

Window A portion of the screen that can contain its
own document or message.

A rectangular area of display on you monitor.

A section of target memory that is handled spe-
cially. (For the HC12, see Program window, Data
window and Extra window.)

Window Filter Mode Restricts the triggering logic,
but allows recording only of references to program

GlossaryGlossaryGlossaryGlossary

160160160160 EMUL196–PC User Guide

or data areas of interest. More useful information
can be collected in this mode before old informa-
tion is overwritten in the trace memory.

Windows NT / 2000 / 95 / 98 Operating Systems
(OS) produced by Microsoft Corporation. Win-
dows 98 replaced Windows 95 and Windows 2000
replaced Windows NT 4. These are the dominant
OSs for PCs today.

X

XRAM Provides access to 2K of on-chip RAM.
No external bus cycles are executed for these
accesses.

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 161161161

Index

3

3COM Etherlink III (905B or later) 10/100 PCI · 11

8

87C196CB Bondout Errata · 126
Extended Addressing Bugs · 126
PRU with /#EA Pin High · 126

8xC196 Port 5 Circuit · 80

A

Aborted Interrupt Vectors to Lowest Priority Bug · 131
About This Guide · x
Accessories and Adapters · 39
Active Triggers · 33
Adapters · 39

Clip-Over · 39
Pin Grid Array · 39
PLCC · 39
Surface Mount QFP · 39
Surface Mount SQFP · 39

address conflict · 96
Address Cycle Type · 35
Address Cycle Type/Data Trigger Mode · 37
Address Cycle Type/Opcode Trigger Mode · 36
address examples for emulator/trace

100 Hex Range · 117
200 Hex Range · 118
300 Hex Range · 119

Administrator Dialog Box · 17
Alternative Addressing

for Windows 2000 · 20
for Windows 95/98 · 12
for Windows NT · 14

Assembler Notes · 115
associating addresses with symbols · 71
Autorun feature · 7

B

base address

for Windows 2000 · 20
for Windows 95/98 · 12
for Windows NT · 15

basic hardware · 1
25-pin to 50-pin cable · 1
Emulator board · 1
Five-foot ribbon cable · 1
Pod board · 1
Standard or Data trace board · 1
Target adapter · 1

Bay Networks NetGear FA310TX 10/100 PCI · 11
Bits Used for Addressing · 107
black wire · 44
BNC connectors · 29
Break Emulation · 33
BRK_IN · 42
BRK_OUT · 42
buswidth for CA/CB, troubleshooting · 108

C

CA device users · 126
CB device users · 126
CCB bits · 78
CCB Settings · 79
check list for troubleshooting · 95
Checking Administrative Privileges

for Windows 2000 · 16
for Windows NT · 13

Checking Your PC for Default Address Conflicts
for Windows 2000 · 18
for Windows 95/98 · 12
for Windows NT · 14

Chip Configuration Bytes (CCBs), troubleshooting · 107
Chip Side of the KR/NT PRU · 74
Clip-Over · 39
clip-over adapter · 44
Code coverage · 46
Compiler Notes · 115

IndexIndexIndexIndex

162162162162 EMUL196–PC User Guide

Compilers
IAR · 116–15
Overview · 115
Tasking · 115

Assembler Notes · 115
Compiler Notes · 115

Configuring Address Settings for the Emulator and Optional
Trace Board · 11

Configuring Address Settings With Windows · 11
Windows 2000 · 16
Windows 95/98 · 12
Windows NT · 13

Configuring Address Settings with Windows 2000 · 16
Alternative Addressing · 20

base address · 20
default address range · 20
unused address range · 20

Checking Administrative Privileges · 16
Checking Your PC for Default Address Conflicts · 18
Driver Troubleshooting · 20
Nohau196 Device Driver · 20

Configuring Address Settings with Windows 95/98 · 12
Alternative Addressing · 12

base address · 12
unused address range · 12

Checking Your PC for Default Address Conflicts · 12

Configuring Address Settings with Windows NT · 13
Alternative Addressing · 14

base address · 15
unused address range · 14

Checking Administrative Privileges · 13
Checking Your PC for Default Address Conflicts · 14
Driver Troubleshooting · 15
Nohau196 Device Driver · 15

Configuring the Seehau Software · 7
Connecting the Emulator to Your Pod Board with the

Ribbon Cable · 21
contents of the trace buffer · 31
Control Panel Devices Window · 15
Creating a Shortcut to PicView · 40
CS0 Initialization Bug · 73
Cstart.asm · 116

D

data display mode, how to change · 87
Data Flow To and From the Target and the

MAX232 Chip · 50, 59, 67, 124, 138
Data in Real-Time with Shadow RAM · 86

Data menu screenshot · 87
Data window screenshot · 86
To change the data display mode · 87
To open a Data window · 86

Data Menu (screenshot) · 87
Data to Trigger On · 37

Begin · 38–37
End · 38–37
Trigger Mode · 38–37

Data Trigger Mode · 37
Begin · 37
Cycle Type · 37
End · 37

Data Trigger Type · 35, 37
Data Window (screenshot) · 86
Data window, how to open · 86
DB-25 connector · 28
Debugging the Parallel Port, troubleshooting

Window NT users
NT Diagnostics · 99

Windows 2000 users
device driver · 99
parallel port mode · 103
ParPort driver · 101

Windows 9x users · 99
Windows NT users

checking driver status · 99

Demo mode · 7
Design Limitations for the PRU · 78
Device Manager Window · 18
Device Manager Window (screen shot) · 101
Device Manager Window Displaying the System Resources

(screen shot) · 102
Dimensions of pod board

POD196-CA/CB · 122
POD196-EA · 134
POD196-KC/KD · 47
POD196-KR/NT · 56
POD-196LC-KR/NT · 143
POD196-NP/NU · 64

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 163163163

Downloading EMUL196–PC Product Documentation · x
Driver Troubleshooting

for Windows 2000 · 20
for Windows NT · 15

E

ECP · 103
ECP + EPP · 103
EMUL196/ISO-160 · 111
emulating single-chip applications · 46
emulation controller · 43
Emulation Memory for pod board

POD196-CA/CB · 122
POD196-EA · 135
POD196-KC/KD · 48
POD196-KR/NT · 57
POD-196LC-KR/NT · 143
POD196-NP/NU · 65

Emulator / Trace Address Examples
100 Hex Range · 117
200 Hex Range · 118
300 Hex Range · 119

emulator boards with 1-MB of Shadow RAM · 24
Emulator Configuration (Communications) Dialog Box · 8
Emulator Configuration Dialog Box for the ISA · 9
emulator configuration utility screen · 106
Emulator Does Not Start · 105
Emulator I/O Address Header J2 · 24
Emulator Memory · 45
emulator settings, quick-save · 26
enough memory, troubleshooting · 107
Entering Addresses and Data · 36
EPP · 103
EST/ELD Base-Indexed Addressing Mode Bug · 127

Assembly Language Workaround · 128
C Compiler Workarounds · 129

EST/ELD Indirect Addressing Mode Bug · 130
European CE Requirements · viii

Special Measures · viii
User Responsibility · viii

Extended Addressing Bugs
Aborted Interrupt Vectors to Lowest Priority · 131
EBR Dummy Prefetch Anomaly · 133
EST/ELD Base-indexed Addressing Mode · 127
EST/ELD Indirect Addressing Mode · 130
Illegal Opcode Interrupt Vector · 132
PTS Request During Interrupt Latency · 132

SJMP/Conditional Jumps Near Page Boundary · 132

extended base-indexed load instruction · 127
Extended Branch Indirect (EBR) Dummy Prefetch

Anomaly Bug · 133

F

Features Common to All Pod Boards · 41
Indicator Lights · 42

Halt · 42
Reset · 42
Run · 42
User · 42

Stack Pointer · 41

Figure 1. HSP Box Connected to a Pod Board and Laptop
Computer · 2

Figure 2. Steps for Installing and Configuring the EMUL196–
PC and Seehau Software · 4

Figure 3. Steps for Installing the EMUL196–PC Hardware · 5
Figure 4. Emulator Configuration (Communications)

Dialog Box · 8
Figure 5. Emulator Configuration Dialog Box for the ISA · 9
Figure 6. Hardware Configuration · 9
Figure 7. System I/O Resources · 12
Figure 8. User Manager Dialog Box for Windows NT · 13
Figure 9. Local Group Properties Dialog Box for

Windows NT · 13
Figure 10. NT Diagnostics Window · 14
Figure 11. Control Panel Devices Window · 15
Figure 12. Users and Passwords Window · 16
Figure 13. Local Users and Groups Window · 16
Figure 14. Local Users and Groups Window with

Groups Folder · 17
Figure 15. Administrator Dialog Box · 17
Figure 16. System Properties Window · 18
Figure 17. Device Manager Window · 18
Figure 18. System Resources · 19
Figure 19. Connecting the Emulator to Your Pod Board with

the Ribbon Cable · 21
Figure 20. Rev. D Emulator Board · 22
Figure 21. Emulator I/O Address Header J2 · 24
Figure 22. Trace Board I/O Address Header J1 · 27
Figure 23. Trace Board Connectors · 29
Figure 24. Trigger Conditions · 31
Figure 25. Trace Window · 32
Figure 26. Trace Menu · 32
Figure 27. Trace Configuration/Trace Setup Tab · 33
Figure 28. Pulses · 35
Figure 29. Trace Configuration/Trigger and Filter Tabs · 35

IndexIndexIndexIndex

164164164164 EMUL196–PC User Guide

Figure 30. Address Cycle Type/Opcode Trigger Mode · 36
Figure 31. Address Cycle Type/Data Trigger Mode · 37
Figure 32. Data Trigger Type · 37
Figure 33. POD196–KC / KD (Rev. B) · 47
Figure 34. POD196–KC / KD Footprint Dimensions · 48
Figure 35. Data Flow To and From the Target and the

MAX232 Chip · 50
Figure 36. POD196–KR / NT (Rev. B) · 56
Figure 37. POD196–KR / NT Footprint Dimensions · 57
Figure 38. Data Flow to the Target and the

MAX232 Chip · 59
Figure 39. Ready Functionality Jumper Solution · 62
Figure 40. POD196–NP / NU (Rev. C and D) · 64
Figure 41. POD196–NP / NU Footprint Dimensions · 65
Figure 42. Data Flow to the Target and the

MAX232 Chip · 67
Figure 43. POD196–NP / NU Configuration Headers · 67
Figure 44. Wiring for the 256K by 8 RAM Chip · 71
Figure 45. Schematic of Memory Mapping · 73
Figure 46. Chip Side of the KR/NT PRU · 74
Figure 47. Header Side of KR/NT PRU · 76
Figure 48. 8xC196 Port 5 Circuit · 80
Figure 49. PRU Port 5 Circuit · 81
Figure 50. Seehau for EMUL196–PC · 83
Figure 51. Loading Code · 85
Figure 52. Time Program · 86
Figure 53. Data Window · 86
Figure 54. Data Menu · 87
Figure 55. Trace Window Showing Trace Memory · 89
Figure 56. Trace Configuration Dialog Box · 90
Figure 57. Save Settings Dialog Box · 93
Figure 58. HSP Card LED · 97
Figure 59. System Information Window · 100
Figure 60. List of Active Drivers · 100
Figure 61. System Properties Window · 101
Figure 62. Device Manager Window · 101
Figure 63. Device Manager Window Displaying the System

Resources · 102
Figure 64. PLCC–52–ISO · 111
Figure 65. ISO–160, One Part of Four · 112
Figure 66. Samtec SSQ–117–03–GD · 113
Figure 67. Pin Addressing 100 Hex Range · 117
Figure 68. Pin Addressing 200 Hex Range · 118
Figure 69. Pin Addressing 300 Hex Range · 119
Figure 70. POD196–CA / CB (Rev. B) · 121
Figure 71. POD196–CA / CB Footprint Dimentions · 122
Figure 72. Header for Controller With 16 Address Bits · 123
Figure 73. Data Flow To and From the Target and the

MAX232 Chip · 124
Figure 74. POD196–EA · 134

Figure 75. POD196–EA Footprint Dimensions · 135
Figure 76. Data Flow To and From the Target and the

MAX232 Chip · 138
Figure 77. Pod Configuration Headers · 138
Figure 78. Workaround for the Trace Buffer Addresses · 140
Figure 79. POD–196LC–KR/NT (Rev. A) · 142
Figure 80. POD–196LC–KR/NT Footprint Dimensions · 143
Figure 81. Header for Controller with 20 Address Bits · 144
Filter Mode · 31, 34
Footprint Dimensions

POD196-CA/CB · 122
POD196-EA · 135
POD196-KC/KD · 48
POD196-KR/NT · 57
POD-196LC-KR/NT · 143

H

Halt light · 42
Hardware Configuration · 9
Hardware Configuration, Summary · 44

RAM · 44
target crystal · 44
target power supply · 44
target serial port · 44

hardware memory mapping · 141
Hardware Notes · 94
Header for Controller With 16 Address Bits · 123
Header for Controller with 20 Address Bits · 144
Header J4 · 24
Header JP1 · 24
Header JP2 for the PRU · 78

8xC196 vs. POD196 · 78
Port 3 · 80
Port 4 · 80
Port 5 · 80

CCB Settings · 79
ST instruction · 79
STB instruction · 79

Header Side of KR/NT PRU · 76
Headers and Jumpers

POD196-CA/CB · 123
POD196-EA · 136
POD196-KC/KD · 48
POD196-KR/NT · 57
POD-196LC-KR/NT · 143
POD196NP/NU · 66

Headers and jumpers for the PRU · 75

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 165165165

High-Speed Parallel (HSP) Box · 1, 2
HLD signal · 42
HSP Box Connected to a Pod Board and Laptop Computer · 2
HSP Card LED (photo) · 97
HSP/USB Box, troubleshooting · 97

Do board I/O addresses match? · 98
Does the HSP/USB card LED flash? · 97
Does the reset LED flash? · 97

I

I/O Address Jumpers · 23
I/O addresses, troubleshooting · 105
I/O on address pins, troubleshooting · 107
IAR, compilers · 116
If the hex address was changed · 28
If you are purchasing the emulator board and the

trace board · 10
Illegal Opcode Interrupt Vector Bug · 132
Indicator Lights · 42

Halt · 42
Reset · 42
Run · 42
User · 42

Installing and Configuring the Emulator Board · 21
Installing and Configuring the Pod Board, Overview · 41
Installing and Configuring the Seehau Software · 7

Configuring Seehau · 7
Configuring Address Settings with Windows Operating

Systems
Windows 95/98 · 12
Windows 2000 · 16
Windows NT · 13

installing · 7
Purchasers of Emulator and Trace Boards · 10
Running the Configuration Software · 8

Installing and Configuring the Trace Board · 27
Hardware Description · 27

External Inputs and Controls · 28
I/O Address · 27
Installation Instructions · 27

Trace Configuration · 33
Data to Trigger On · 37
Data Trigger Mode · 37
Entering Addresses and Data · 36
Opcode Trigger Mode · 36
Other Controls · 38
Trace Setup Tab · 33
Trigger/Filter Configuration Tabs · 35

Trace menu · 32
Trace Modes · 30

Filter mode · 31
Normal mode · 30
Window mode · 31

Trace Window · 31
Frame number · 31
Hexadecimal address · 31
Hexadecimal data · 31
opcode · 31

Tracing Overview · 30

Installing the Emulator Board · 22
Addressing Examples · 24
Header J4 · 24
Header JP1 · 24
I/O Addresses · 23
If you are using the HSP box · 21
If you are using the ISA card · 21
into the ISA slot · 25
Quick-Save Settings · 26
Setting the I/O Address Jumpers · 23
Shadow RAM · 25
supported pod boards · 22

Installing the PRU · 75
Intel Ether Express Pro 10/100 ISA · 11
Internal Addressing · 45

EA pin · 45
PRU · 45
RAM and ROM · 45

interrupt vectors, troubleshooting · 108
ISA slot, installing the emulator board into the · 25
ISA, troubleshooting · 104

Do board I/O addresses match? · 104
Does the pod reset LED flash? · 104
Will Seehau start? · 104

IndexIndexIndexIndex

166166166166 EMUL196–PC User Guide

ISO–160
EMUL196/ISO-160 · 111
PLCC-52-ISO · 111
SAMTEC/SSQ-117-03-GD · 113

ISO–160, One Part of Four (drawing) · 112
isolating a target board signal from the pod board · 111
isolating chip-select lines · 112

K

Known Device Driver Conflicts · 11
solution · 11
symptoms · 11

KR/NT Ready Functionality · 61

L

Last Trigger Repeat Count · 34
layout, pod board · See pod board layout
List of Active Drivers (screen shot) · 100
Loading Code · 85
Local Group Properties Dialog Box for Windows NT · 13
Local Users and Groups Window · 16
Local Users and Groups Window with Groups Folder · 17
Low-Cost Industry Standard Architecture (LC–ISA) · 1, 3

M

Macro subdirectory · 94
MAX232 chip

POD196-CA/CB · 124
POD196-EA · 138
POD196-KC/KD · 50
POD196-KR/NT · 59
POD196-NP/NU · 67

Memory Map Configuration Requirements · 44
Memory Mapping for pod board

POD196-EA · 141
POD196-KC/KD · 53
POD196-NP/NU · 72

modes known to cause problems · 103

N

ncore, troubleshooting · 96
negative frame number · 31
Nohau196 Device Driver

for Windows 2000 · 20
for Windows NT · 15

nonmaskable interrupt · 41
nonmaskable interrupts, troubleshooting · 108
Normal Mode · 30
NT Diagnostics Window · 14

O

Opcode · 34
Opcode Trigger Mode · 36

Begin · 36
Cycle Type · 36
End · 36

Other Controls for Trace Configuration · 38
Address Mask · 38
Apply · 38
Cancel · 38
Data Mask · 38
Enabled · 38
OK · 38

Overview of the EMUL196–PC · 1
High-Speed Parallel (HSP) Box · 2
Low-Cost Industry Standard Architecture (LC-ISA) · 3
PC Plug-In/Industry Standard Architecture (ISA) · 3
Quick Start for Installing the Hardware · 5
Quick Start for Installing Your Emulator System · 4
Universal Serial Bus (USB) Box · 2
User Interface · 3–2

Overview, pod boards · See pod board, overview

P

P34_DRV register · 77
P5DIR · 78
P5MODE · 78
P5PIN · 78

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 167167167

P5REG · 78
PAL · 73
PC Plug-In/Industry Standard Architecture (ISA) · 1, 3
Pin Addressing 100 Hex Range · 117
Pin Addressing 200 Hex Range · 118
Pin Addressing 300 Hex Range · 119
Pin Grid Array · 39
PLCC · 39
PLCC–52–ISO · 111
PLCC–52–ISO (drawing) · 111
pod board layout

POD196-CA/CB (Rev. B) · 121
POD196-EA · 134
POD196KC-KD (Rev. B · 47
POD196-KR/NT (Rev. B) · 56
POD-196-LC-KR/NT (Rev. A) · 142
POD196-NP/NU (Rev. C and D) · 64

Pod board, installing and configuring overview · 41
pod board, overview

POD196-CA/CB · 121
POD196-EA · 134
POD196-KC/KD · 47
POD196-KR/NT · 56
POD-196LC-KR/NT · 142
POD196-NP/NU · 64

Pod Boards
Current

POD196-KC/KD · 47
POD196-KR/NT · 56
POD196-NP/NU · 64

Discontinued
POD196-CA/CB · 121
POD196-EA · 134
POD-196LC-KR/NT · 142

Pod Configuration Headers · 138
POD196–CA / CB

87C196CB bondout errata · 121
extended addressing bugs · 126
PRUwith /#EA Pin High · 126

board layout · 121
dimensions · 122
emulation memory · 122
Headers and Jumpers · 123

data flow · 124
header for controller with 16 address bits · 123

INST · 122
nonmaskable interrupt · 123
Overview · 121
PRU · 122

POD196–CA / CB (Rev. B), layout · 121
POD196–CA / CB Footprint Dimentions · 122
POD196–EA

8-Bit Mode · 136
Addressing RAM · 135
BHE Mode · 136
board layout · 134
Dimensions · 134
Emulation Memory · 135
footprint dimensions · 135
Headers and Jumpers · 136

configuration headers · 138
data flow · 138

memory mapping · 141
Overview · 134
PRU · 141
Symbols in the Trace window · 140

POD196–EA (layout) · 134
POD196–EA Footprint Dimensions · 135
POD196–KC / KD · 47

Compiling · 54
Data Flow · 50
Dimensions · 47
Download Procedure · 55
Emulation Memory · 48
Hardware Breakpoint Setup · 54
Headers and Jumpers · 48
Memory Mapping · 53
Overview · 47
Procedure to Test · 53
Wait States · 48

POD196–KC / KD (Rev. B) board layout · 47
POD196–KC / KD Footprint Dimensions · 48
POD196–KR / NT · 56

Data Flow · 59
Dimensions · 56
Emulation Memory · 57
Headers and Jumpers · 57
KR/NT Ready Funcionality · 61
NMI Pin · 57
Overview · 56
PRU · 57

POD196–KR / NT (Rev. B) board layout · 56
POD196–KR / NT Footprint Dimensions · 57

IndexIndexIndexIndex

168168168168 EMUL196–PC User Guide

POD–196LC–KR/NT
board layout · 142
dimensions · 143
Emulation Memory · 143
footprint dimensions · 143
Header controller with 20 address bits · 144
Headers and Jumpers · 143
Overview · 142
PRU · 143

POD–196LC–KR/NT (Rev. A), layout · 142
POD–196LC–KR/NT Footprint Dimensions · 143
POD196–NP / NU · 64

Configuration Headers · 67
Data Flow · 67
Dimensions · 64
Emulation Memory · 65
Headers and Jumpers · 66
Memory Mapping using Chip Selects · 72

1-MB pod boards · 72
procedure · 72
schematic · 73

Overview · 64
Trace window symbols · 71

associating addresses with symbols · 71
wiring for the 256K by 8 RAM Chip · 71

Wait States · 65

POD196–NP / NU (Rev. C and D) board layout · 64
POD196–NP / NU Configuration Headers · 67
POD196–NP / NU Footprint Dimensions · 65
Port 3 · 76
Port 3 and 4 Reconstruction · 77

actual value · 77
passing the address/data bus to the user · 77
passing the address/data to the target · 77
push/pull · 77

Port 4 · 76
Port 5 · 77
Port 5 Reconstruction · 78

CCB bits · 78
function · 78
P5DIR · 78
P5MODE · 78
P5PIN · 78
P5REG · 78

Port Replacement Unit · 46, 74
chip side of the KR/NT PRU · 74
design limitations · 78
Header JP2 · 78

8xC196 vs. POD196 · 79
CCB settings · 79
ST instruction · 79
STB instruction · 79

Header side of the KR/NT PRU · 76
Headers and Jumpers · 75
installing · 75
Overview · 74
Silicon Bugs · 78–77
Special Function Registers · See Special Function

Registers for the PRU
support for processors · 75
When to use a PRU · 74

positive frame number · 31
Post Trigger Count · 34
power supply · 43
printing, troubleshooting · 96
Product Notes · viii

European CE Requirements · viii
Special Measures · viii
User Responsibility · viii

Minimum System Requirements · ix–viii
Warnings · viii

Program Performance Analyzer · 46
PRU for pod board

POD196-CA/CB · 122
POD196-EA · 141
POD196-KR/NT · 57
POD-196LC-KR/NT · 143

PRU Header JP2 · See Header JP2 for the PRU
PRU Port 5 Circuit · 81
PRU Special Function Registers · 76
PTS Request During Interrupt Latency Bug · 132
Pulses · 35
PWR jumper, troubleshooting · 106

Q

Quick Start for Installing the Hardware · 5
Quick Start for Installing Your Emulator System · 4

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 169169169

R

Ready Functionality Jumper Solution · 62
reloading Seehau · 96
Replacing ports for 196-KR/NT and 196-CA/CB · 45
Reset light · 42
Reset Values for the PRU · 77
resetting the controller · 41
Resource selection for pod boards · 42

Clip-over adapter · 44
crystal · 43
emulation controller · 43
power supply · 43

Rev. D Emulator Board · 22
Run light · 42
Running the trace memory example · 89

S

sample user program · 109
Samtec SSQ–117–03–GD (drawing) · 113
SAMTEC/SSQ–117–03–GD · 113
Save Settings Dialog Box (screenshot) · 93
saving the emulator configuration · 91
Schematic of Memory Mapping · 73
Seehau

configuring · 7
installing · 7
shutting down · 93
starting · 84–83
uninstalling · 94–93

Seehau for EMUL196–PC (screenshot) · 83
Seehau software, how to install · 7
Seehau Software, starting · 83
setting up a trigger to start and stop the trace memory

recording · 89
Shadow RAM · 25
Shutting Down Seehau · 93
Silicon Bugs for the PRU · 78
Single-Chip Mode · 45

EA pin · 45
PRU · 45
RAM and ROM · 45

Single-chip mode, troubleshooting · 109
SJMP / Conditional Jumps Near Page Boundary Bug · 132
Software Notes · 94
source level debugging · 115
Special Function Registers for the PRU · 76

Port 3 · 76
Port 3 and 4 Reconstruction · 77

actual value · 77
passing address/data to the target · 77
passing the address/data bus to the user · 77

push/pull · 77

Port 4 · 76
Port 5 · 77
Port 5 Reconstruction · 78

CCB bits · 78
function · 78
P5DIR · 78
P5MODE · 78
P5PIN · 78
P5REG · 78

Reset Values · 77

ST instruction · 79
Stack Pointer · 41
Stack Pointer, troubleshooting · 96
stand-alone mode, troubleshooting in · 96
Starting Seehau · 83, 84

If you are using an HSP or USB box · 84
If you receive a fatal error · 84
reset light · 84
Startup.bas file · 84

Starting the Emulator · 83
Starting the Emulator and Seehau Software · 83

Hardware Connection · 83
Seehau for the EMUL196-PC (screenshot) · 83
Starting Seehau · 84

Startup.bas · 7
STB instruction · 79
Steps for Installing and Configuring the EMUL196–PC and

Seehau Software · 4
Steps for Installing the EMUL196–PC Hardware · 5
Stopping code execution on two emulators

simultaneously · 42
BRK_IN · 42
BRK_OUT · 42

stopping program execution · 89
Support for software breakpoints · 108
Surface Mount QFP · 39
Surface Mount SQFP · 39
Symbols in the Trace Window

POD196-EA · 140
POD196-NP/NU · 71

system configurations · 1
High-Speed Parallel (HSP) Box · 2, 1

IndexIndexIndexIndex

170170170170 EMUL196–PC User Guide

Low-Cost Industry Standard Architecture (LC-ISA) · 3, 1
PC Plug-In/Industry Standard Architecture (ISA) · 3, 1
Universal Serial Bus (USB) Box · 2, 1

System I/O Resources · 12
System Information Window (screen shot) · 100
System Properties Window · 18
System Properties Window (screen shot) · 101
System Requirements · ix
System Resources · 19

T

Target Crystal, selecting · 44
Target Power Supply, selecting · 44
Target Serial Port, selecting · 44
Tasking V4.0, Rev. 3 · 115
Tasking, compilers · 115
Time Program (screenshot) · 86
Time Program Example · 85

loading code · 85
location of example · 85
Time Program screenshot · 86
Watching Data in Real-Time with Shadow RAM · 86
Xx_time.c tab · 85
Xx_time.omf · 85

Trace Board Connectors · 29
trace board hardware description · 27

External Inputs and Controls · 28
DB-25 connector · 28
trace board connectors · 29

I/O Address · 27
Installation Instructions · 27

Trace Board I/O Address Header J1 · 27
trace buffer · 30
Trace Configuration · 33

Entering Addresses and Data · 36–35
Opcode Trigger Mode · 36
Trace Setup Tab · 33
Trigger/Filter Configuration Tabs · 35

Trace Configuration Dialog Box (screenshot) · 90
Trace Configuration/Trace Setup Tab · 33
Trace Configuration/Trigger and Filter Tabs · 35
trace history · 30
Trace Input Pins · 42
Trace Memory Example · 89

Overview · 89
Running the Example · 89

Saving the Configuration · 91–90
Trace window showing trace memory (screenshot) · 89

Trace Menu · 32
Trace Modes · 30

Filter Mode · 31
Normal Mode · 30
Window Mode · 31

Trace Setup Tab · 33
Active Triggers · 33
Break Emulation · 33
Filter Mode · 34–33
Last Trigger Repeat Count · 34
Post Trigger Count · 34
Trace Type · 33
Trigger Mode · 34
Trigger Output Pulse Mode · 34

Trace Type · 33
Trace Window · 31, 32

Frame number · 31
Hexadecimal address · 31
Hexadecimal data · 31
opcode · 31

Trace Window Showing Trace Memory (screenshot) · 89
Tracing Overview · 30
Tracing starts when · 31
Tracing stops when · 31
Trigger / Filter ConfigurationTabs · 35

Address Cycle Type · 35
Data Trigger Type · 35

Trigger Conditions · 31
Trigger Mode · 34
Trigger Output Pulse Mode · 34
TRIGGER_IN · 29
TRIGGER_OUT · 29
triggers · 29
Troubleshooting · 95

Board I/O Addresses · 105
buswidth · 108
Check list · 95
Chip Configuration Bytes (CCBs) · 107
Debugging the Parallel Port · 99

Windows 2000 Users · 99
Windows 9x Users · 99
Windows NT Users · 99

Emulator Configuration Utility Screen · 106
emulator does not start · 105
HSP/USB box · 97
I/O Address Pins · 107

EMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User GuideEMUL196–PC User Guide

Edition 1, June 6, 2001 © 171171171

interrupt vectors · 108
ISA · 104
memory · 107
nonmaskable interrupt · 108
Overview · 95
PWR Jumper · 106
Sample User Program · 109
Single-chip mode · 109
Stack Pointer · 96, 107
XTAL Jumper · 106

U

UBROF format · 116
Unexecuted/untested code · 46
Uninstall Seehau · 94
Universal Serial Bus (USB) Box · 1, 2
unused address range

for Windows 2000 · 20
for Windows 95/98 · 12
for Windows NT · 14

unwanted breakpoints · 69
updating the CCB registers · 108
User Interface · 3
User light · 42
User Manager Dialog Box for Windows NT · 13
Users and Passwords Window · 16

V

verify the orientation of your adapter · 39

W

Wait States
POD196-KC/KD · 48
POD196-NP/NU · 65

Warnings · viii
When to Use a Port Replacement Unit · 74
Window Mode · 31
Windows NT Installation · 11
Wiring for the 256K by 8 RAM Chip · 71

Workaround for the Trace Buffer Addresses · 140

X

XTAL · 43
XTAL jumper, troubleshooting · 106
Xx_time.c tab · 85
Xx_time.omf · 85

Y

Yes, on Trace Stop · 33
Yes, on Trigger · 33

Sales Offices, Representatives and DistributorsSales Offices, Representatives and DistributorsSales Offices, Representatives and DistributorsSales Offices, Representatives and Distributors

10101010–Sales Offices and Reps EMUL196–PC User Guide

