
Nohau San Mateo CA (800) 686-6428 (650) 375-0409 www.icetech.com sales@icetech.com

800.686.6428 650.375.0409
www.icetech.com
Nohau

Introduction
Software simulators, target monitors and
BDM (or SDI) interfaces offer economical
debugging capabilities sufficient for many
applications. In-circuit emulators offer
additional advanced real-time debugging
facilities. There are differences between
these options in terms of debugging
power, real-time operation, intrusiveness
and productivity effectiveness.

With software debuggers, monitors and
BDM tools one can load, single-step and
run programs. Software breakpoints can
be set and memory can be examined. Some
microcontrollers, such as the HC12, have
integral hardware breakpoints set via the
BDM interface. Code Coverage and
Performance Analysis may be available
providing statistical information. These
tools do a good job, but have some
shortcomings that can be crucial in
detecting and fixing some of the more
elusive bugs or in special circumstances.

Interesting “what-if” Scenarios
What if you are debugging code that is in
ROM? Or even trickier: ROM inside the
chip? What if you need the serial port that
software debuggers commonly use to
communicate with the controller? What if
you want to detect a certain situation:
such as a write of a certain value to an
external peripheral AND if another variable
equals 6, and then stop the execution? Or
record these bus cycles? What if a bug
causes your program to jump off into
never-land and you need to know what
was happening just before this event?
What if your RTOS is causing strange
problems? If you have bugs in different
memory banks: is your tool aware of bank
switching? Unlimited hardware
breakpoints, a non-intrusive connection,
bank aware conditional triggers and trace
memory are solutions to these problems
and more. You need an emulator.

This note examines these situations using
Motorola microcontrollers such as the
HC11, HC12, HC16 and the 68300 series.
The focus is on the HC12 series.

The Software Engineer’s Guide to In-Circuit Emulation
Increase your debugging skills with Motorola Microcontrollers!

The Development Cycle
The typical microprocessor development
project begins with a C compiler produc-
ing an object file from your source code.
This object code will contain the physical
addresses and some debugging informa-
tion using a standard file format such as
IEEE695 or ELF-DWARF. This object code
can be executed and debugged using a
software simulator, a target monitor, BDM
debugger or an in-circuit emulator. A most
undesirable method is to program an
Eprom or internal FLASH, run the target
system and observe what happens.

The program is debugged by setting
breakpoints to halt execution at selected
instruction locations. When execution is
halted, the memory and register contents
are examined for clues to help find bugs.

The debugged object code is re-compiled.
For the final product the debug informa-
tion is removed and a file is produced in a
standard format such as Motorola S-
records. This file will be stored in the final
product’s nonvolatile memory such as
EPROM or FLASH. This process is
illustrated in Figure 1. This memory can be
external or internal to the microcontroller.
The HC11 has OTP (unerasable EPROM)
and the HC12 has FLASH and EEPROM.

Why do we need emulators ?
There are some cases where an emulator is
needed to resolve difficult to find bugs. In
all cases an emulator will pay for itself by
providing you with decreased debugging
time, ease of system integration, increased
reliability and better testing procedures.
Often, designers use both an emulator and
a BDM debugger during different project
stages, especially in larger design teams.
A BDM running on a Motorola controller
is more effective than a target monitor.

Software simulators and debuggers offer
no means to detect events or conditions
and then act on them, and certainly not in
real-time. There are no means to record
controller bus cycles to determine what
actually happened to the program flow.

In-circuit emulators can easily do these
tasks and more for you. Emulators are the
bridge between software and hardware. At
some point in time, you have to run your
program in real hardware. An emulator will
easily help you accomplish this.

What exactly is an emulator?
“An emulator is a computer that engineers
use to design other computers” is the most
basic definition I have thought of. Emula-
tors replace the microcontroller in your
target system. The emulator behaves
exactly like the processor with the added
benefit of allowing you to view data and
code inside the processor and control the
running of the CPU.

Figure 2 shows the Nohau emulators for
the Motorola HC12 family. They are all
compact handheld emulators that go
anywhere you and your laptop can go.
They are all powered with a 5 volt supply.

Nohau
422 Peninsula Aveneu
San Mateo CA 94401

©2000 Nohau
Version 1.2
October 16, 2000

Nohau Campbell, California (800) 686-6428 (650) 375-0409 www.icetech.com sales@icetech.com

External Mode
External mode is when the program
memory and perhaps some data memory is
located externally to the controller. This is
the classic situation where the target board
contains a microcontroller, some EPROM
or FLASH, RAM and some type of
peripheral chips. The address and data
busses are available to access this memory
and are the only means for an emulator to
gather information and control the CPU.
Therefore information about internal
registers is not available in real-time. The
address and data busses may not be used
as general I/O ports. Production chips are
effective for emulating this mode as is the
BDM debugger port.

Internal or Single-chip Mode
Internal mode is when program and data
memory is located in the controller chip
in the form of FLASH or EPROM. This
method is becoming preferred for embed-
ded designs due to its low cost and easy
software updating. Address and data
busses are not accessible by the user or an
emulator. These bus pins are then
available as I/O ports. All program
execution occurs in the internal ROM.
This mode requires special considerations
for effective emulation. BDM and JTAG
debuggers are effective for single-chip
mode emulation but have no trace or
triggering capabilities.

Nohau emulators generally run production
chips in external mode and use special
circuitry to reconstruct the I/O ports (Port
Replacement units - PRU). This process is
transparent to the user. Nohau full
emulators do not use normally use the
BDM port for emulation purposes.

It is possible to embed a monitor kernel in
the ROM, coexisting with the program
code. The user can activate the kernel
with a switch connected to an I/O pin or a
special software sequence sent over some
communication link such as radio, Internet
or telephone modem. This will allow
operation of a debugger via a serial, CAN
or other port. Some system resources
need to be reserved. This scheme is called
remote debuggging and is useful to debug
a target when it is not easily accessible
such as down an oil well, on a mountain
top, embedded deep in a machine or even
on Mars! In these types of situations, a
remote debugger is common.

BDM: Background Debug Mode
This is an exclusive Motorola feature
using a dedicated serial port to gain access
to a special debug module inside the
microcontroller. This module operates
parallel to the microcontroller and gener-
ally uses no resources. It has access to
internal registers and memory and can
control the CPU. Some models have two
hardware breakpoints for ROM operation.
Figure 3 shows the Nohau BDM debugger.
The Motorola SDI appears similar.

A BDM debugger does not have trace
memory, triggers or emulation memory. A
BDM emulator is sometimes used in
conjunction with a full emulator. It is the
preferred method used to program FLASH
and EEPROM in the HC12 controller in
your target system.

The BDM debugger will function on any
working target system with an appropriate
BDM connector installed. No changes are
needed to the hardware so debugging is
easy and fast: even to existing products.

You can load a program and single-step or
run the target processor. Source code will
be visible for HLL debugging. You can set
software breakpoints (hardware in HC12)
and view memory in real-time.

Variable, arrays, memory areas and
structures are viewed in a variety of
formats. The Nohau BDM has Shadow
Memory allowing the viewing of data
writes in real-time. The target emulator
usually runs at full clock speed. There are
a few instances where CPU cycles are
stolen to perform some operations. A
BDM debugger is more robust than a
monitor, but with less features than a full
emulator. Many projects are successfully
completed with a BDM or JTAG debugger.
A full emulator used in your development
cycle will still speed up your development
projects with increased code reliability.

JTAG Debugging
The higher speeds and complexity of some
microprocessors has encouraged chip
makers to incorporate debugging facilities
on-chip. The BDM is one example. The
JTAG interface was designed to facilitate
testing circuit board connections between
large chips. This is a serial connection and
signals can be sent to and read from I/O
ports. This is also called the JTAG
Boundary Scan because the serial data
scans the outside I/O pins of the chip. A
pattern sent from one chip to the next can
be then compared to check if the circuit
board connections are intact.

Since the JTAG port is unused during
normal chip operation, and since it runs in
parallel to the controller’s CPU, it can
access an on-chip debugging module in
real-time similar to the BDM interface.
This module has direct access to the CPU
core. Motorola uses this approach in the
PowerPC and some 68K microcomputers.
It is possible to build an emulator using a
combination of the JTAG or BDM and
standard trace and trigger hardware giving
high performance but not having all the
real time features of a full emulator.

No target or CPU resources used
Monitor kernels typically need about 10K
ROM and 10-20 bytes RAM and a free
communication port. A good emulator
uses none of these. The emulator should
be invisible to the target. Better emulators
are; and in addition do not steal CPU cycle
time for ordinary housekeeping duties
such as setting triggers, viewing the trace
buffer and modifying memory on the fly.

Getting the Hardware Working
Simulators are great, but they can not take
all the variables into account. A simulator
designer has to think of everything: the
big problems are usually those items that
come up after the hardware is constructed.
Items like capacitance, timing, inductance,
and chip versions. These become more
important as CPU speeds increase. It is a
very difficult task to replicate the pipeline
found in many microcontrollers today and
is best done with real hardware.

Target monitors and BDM debuggers are
considerably better in that they run on real
hardware. But the target system must be a
complete working system in order to get
the monitor kernel to run. If your target is

Nohau San Mateo CA (800) 686-6428 (650) 375-0409 www.icetech.com sales@icetech.com

not functioning you might not be able to
establish communication with the CPU.
Typical problems include wrong or erratic
clock speeds, shorted or reversed address
and data busses or defective memory
addressing logic. You may have difficulty
determining why your target is not running
and some tools might not provide many
clues. Not so with an emulator. An
emulator will run with no hardware at all or
incomplete sections. You can usually peek
and poke at memory areas and gain
enough clues to guide you to the problem
area such as stuck bit(s).

Evaluation boards are an economical and
practical method of shortening your
product development time. They are also a
useful reference design for comparison.

Connecting to Your Target System
This is easy. Most issues will be handled
by the board designer in conjunction with
your emulator representative. Connection
to the target is a two step process.

First, the adaptation method must be
chosen. Solder-down and socket methods
are preferred. The HC11 and 16 are often
in a socket and adapters are available from
Nohau. Clip-over adapters are handy but
expensive. They require the target
controller to have the ability to be put into
a tri-state mode. The HC12 does not have
this resource. Therefore solder-down or
custom adapters are needed. The BDM
needs only the Motorola specified BERG
connector. If you need to access the
target in a hard-to-access area, consider
Nohau’s Flex Cable shown in Figure 4.
The cable can approach the target from
any of the four quadrants. Figure 5 is the
Nohau DA/DG128 solder-down adapter.

Second, the software and jumper settings
on the emulator must be correctly set to
match the target board and the software
initialization routines. This is easy to do
and here is where good technical support
counts. Usually the default settings work.

Hardware Breakpoints
A software breakpoint is created by
inserting a 2 byte instruction which will
divert normal program flow to the
debugger. The program may crash if the
program counter lands on the second byte.
Nohau hardware breakpoints use compara-
tors to detect accesses to a location and
no code memory contents are modified.
Breaks on regions need hardware
breakpoints. Software breaks are still
useful and Nohau provides both types.

Software breakpoints are useless with
ROM memory since the instruction can not
be inserted. Only hardware breakpoints
function in ROM systems.

The two hardware breakpoints provided in
the HC12 are not sufficient for easy source
code single stepping in FLASH memory.
Source code single stepping is accom-
plished by setting hardware breakpoints at
all locations the program could jump to
when an assembly step is performed. In

assembly stepping, there is no problem but
with source stepping there are usually
many assembly steps associated with a
sincle line of C source code. The problem
is where to set the two breakpoints to stop
the execution at the end of the sequence
and what if there are any jumps out of the
sequence? Many workarounds are used
especially in BDM debuggers. Some of
these workarounds are quite elegant. The
Nohau full emulator solves this problem
perfectly since it has an unlimited number
of hardware breakpoints whaich are set to
cover any contingency.

Trace Memory
The Trace records each processor cycle
along with a timestamp and optionally
external signal levels. The trace can record
all code fetches and will distinguish
between instructions that are cancelled in
the CPU pipeline and those successfully
executed. False triggering is therefore
avoided on unexecuted instructions.

The trace can be filtered with the triggers
so that only specified cycles are recorded.
This saves time searching for bugs. You
can select what is recorded in the trace and
can include data reads & writes, instruc-
tion fetches and/or executions, free cycles
and power down cycles. You can trigger
on specific addresses, data values, and
qualifying them as reads or writes and
many other similar qualifiers. The trace
memory is a powerful tool displaying
events as they really happened. Simula-
tors, monitors and BDM debuggers do not
have trace memory or triggers.

Trace Memory: An example
The trace window shown in Figure 6 is
from the new STAR12 emulator. This
recording was unfiltered and represents all
executed instructions, data reads and
writes and a timestamp. Instructions
entering the pre-fetch queue, then can-
celled, are not erroneously classified as
been executed.

The trace can be filtered with the triggers
so that only specified cycles are recorded.
This saves time searching for bugs. You
can trigger on specific addresses, data
values, and qualifying them as reads or
writes and many other similar qualifiers.
The trace memory is a powerful tool,
displaying events as they really happened.

Nohau San Mateo CA (800) 686-6428 (650) 375-0409 www.icetech.com sales@icetech.com

Note the address of the instruction or the
data read or write and the corresponding
timestamp. The address field has six hex
digits. The right four are the value of the
program counter or physical data address
and the left two digits display the bank
page number for the HC12. The timestamp
is shown here as relative to each instruc-
tion but can be displayed as accumulated
time and also in terms of clock cycles.

The red line “sh++;” is the C source code
and the associated dissassembled assem-
bly instructions are shown below them.
Any related symbol information is shown
in the Symbol field but none are shown in
this example. There are more fields and
items that can be displayed such.

The trace can contain 131,072 lines of data
but only 556 are saved here. The trace can
be viewed without stopping the emulation
process allowing your target to continue
running. The triggers greatly magnify the
effectiveness and utility of the trace
memory which leverages your ability to
find and correct bugs quickly and easier.

Conditional Triggers
These are extremely powerful and easy to
use. They allow you to specify an action
when some event happens. The triggers
can be set or edited “on-the-fly” without
stealing cycles from the emulation process.
The Trigger Configuration window shown
in Figure 7 is a simple example. If a data
write cycle to the address “show + 7”
(4387) with a value of 34 occurs, a trigger
event will be created. The trace window in
Figure 6 will be created with these settings.

The trigger can include address, data,
clock cycles and external signals. These
can trigger a break, start/stop the trace
capture, record a timestamp or many other
things determined by the emulator’s
capabilities. Note there are three trigger
mechanisms plus a filter facility. There are
many more features in the Nohau emulator.

The emulation and the trace recording was
set to both stop when the qualifier
becomes true in this example. The
emulation and trace recording are indepen-
dent operations as discussed previously.

What Figure 6 Really Means:
Refer to the Frame numbers at the right
side of Figure 6. Line # 1 represents the
skid that happens by definition of a trigger.

Line # 0 represents the trigger point in this
example. The byte write of 34 to address
4387 (show+7) is clearly shown. This was
the qualifier becoming true and stopping
the emulation and the trace recording.

The STAB instruction at Line # -3 is the
instruction that caused the write to 4387.
This instruction was executed at this time.

The STAB opcode is 6B70. The 6B was
fetched at Line # -10 and the 70 was
fetched at Line # -7.

We can clearly see when the STAB
instruction was fetched, executed and its
subsequent data write occurred. We could
have also displayed the HC12 free cycles.

The triggers are most useful for detecting
writes that you do not expect and that can
be causing software problems. The
offending instructions and/or data can be
displayed providing crucial information.

Emulation Memory and I/O Ports
Ports and memory can be viewed from real
hardware parts and not simply a software
simulation. It is possible to wire your
favorite peripheral chip to the bottom of
the emulator pod and access it.

Often, it seems that problems only develop
when the program is run on the actual
hardware. How often does it seem that
things depend so much on the rise or fall
time of some input signal? Or the routing
of a certain wire? An emulator will help get
your development finished faster by
getting you to this point directly.

Since the emulator has its own internal
RAM which can be substituted for ROM,
you can debug and modify the program
code and data easily in ROM systems.

In the same fashion, memory not yet
installed on the target can be substituted
by the emulator. The size and address of
this RAM is selectable. The granularity is
1 byte allowing mapping around any
external peripheral in your target memory.

Conclusion
This article has provided information
about In-Circuit Emulators and the benefits
that accrue to you, the designer. See
www.nohau.com for more information on
Nohau emulators supporting Motorola.

